Probability

2. Combinatory, Introduction to Probability Christophe Chorro

Notations: For $1 \leq k \leq n$, we take the notation C_n^k or $\binom{n}{k}$ for $\frac{n!}{(n-k)!k!}$ and the notation A_n^k or P(n,k) for $\frac{n!}{(n-k)!}$.

Exercise 1 Suppose repetitions are not allowed.

- a) Find the number n of three digit numbers that can be formed from the six digits: 2, 3, 5, 6, 7, 9.
 - b) How many of them are even?
 - c) How many of them exceed 400?

Exercice 2 A class contains 10 students with 6 men and 4 women. Find the number n of ways:

- a) A 4-member committee can be selected from the students.
- b) A 4-member committee with 2 men and 2 women can be selected.
- c) The class can elect a president, vice-president, treasurer, and secretary.

Exercice 3 Find the number of ways 9 toys may be divided among 4 childrens if the youngest is to receive 3 toys and each of the others 2 toys.

Exercice 4 A pair of dice is tossed and the two numbers appearing on the top are recorded. Find the number of elements in each of the following events.

- a) $A = \{\text{two numbers are equal}\}\$
- b) $B = \{\text{sum is more than } 10\}$
- c) $C = \{5 \text{ appears on first die}\}\$
- d) $D = \{5 \text{ appears on at least one die} \}.$

Exercise 5

a) For $1 \le k \le n$ prove that

$$C_{n+1}^k = C_n^{k-1} + C_n^k.$$

b) Let $(a, b) \in \mathbb{R}^2$ show that $\forall n \in \mathbb{N}^*$.

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}.$$

c) Deduce from the preceding question that

$$C_n^0 + C_n^1 + \dots + C_n^n = 2^n$$

and

$$C_n^0 - C_n^1 + C_n^2 - C_n^3 + \dots + (-1)^n C_n^n = 0.$$

Exercise 6 Compute (for every integer n)

$$0.C_n^0 + 1.C_n^1 + 2.C_n^2 + 3.C_n^3... + n.C_n^n$$

and

$$\frac{C_n^0}{1} + \frac{C_n^1}{2} + \frac{C_n^2}{3} + \frac{C_n^3}{4} + \dots + \frac{C_n^n}{n+1}.$$

Exercise 7 Let E be a set with n elements, compute $card(\mathcal{P}(E))$.

Exercise 8 Find the number of onto mappings from $E = \{1, 2, 3, 4, 5\}$ in $F = \{1, 2, 3, 4\}$. Same question with $E = \{1, ..., n\}$ and $F = \{1, ..., n-1\}$.

Exercise 9 a) Find the number of onto mappings from $E = \{1, ..., n\}$ into $F = \{1, 2\}$.

b) Let A_1, A_2, A_3 be three finite sets, show that

$$card(A_1 \cup A_2 \cup A_3) = \sum_{i=1}^{3} card(A_i) - \sum_{1 \le i \le j \le 3} card(A_i \cap A_j) + card(A_1 \cap A_2 \cap A_3).$$

c) Find the number of onto mappings from $E = \{1, ..., n\}$ into $F = \{1, 2, 3\}$.

Exercise 10 a) Let $A_1, ..., A_n$ be n finite sets. Use mathematical induction to prove that

$$\#(\bigcup_{1 \le i \le n} A_i) = \sum_{i=1}^n \#(A_i) - \sum_{1 \le i < j \le n} \#(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} \#(A_i \cap A_j \cap A_k) + \dots + (-1)^n \#(A_1 \cap \dots \cap A_n).$$

b) Find the number of onto mappings from $E = \{1, ..., n\}$ into $F = \{1, ..., k\}$.

2

c) Find the number of ways to partition a set of n objects into k groups.

Exercise 11 A single card is drawn from an ordinary deck of 52 cards.

- a) Find the probability that the card is a king.
- b) Find the probability that the card is a face card.
- c) Find the probability that the card is a red card.
- d) Find the probability that the card is a red face card.
- e) Find the probability that the card is a red card or a face card.

Exercise 12 Suppose that in a deck of 52 cards, two are chosen at random .

- a) Find the probability that both are spades.
- b) Find the probability that the two cards have not the same color (spade, heart, club, diamond.)
 - c) Find the probability that the first is a spade and the second an heart.
 - d) Find the probability that one is a spade and one is an heart.
 - e) Find the probability that one is a spade and one is an ace.

Exercise 13 Find the probability that n people have distinct birthdays. (Here we ignore leap years and assume that a person's birthday can fall on any day with equal probability).

Exercise 14 Each student in a group of n has to choose k exercises in a list of m exercises.

- a) Find the probability that all students choose a fixed combination of k exercices
 - b) Find the probability that all students choose the same k exercices.
- c) Find the probability that all students do not choose a fixed combination of k exercices .
- d) Find the probability that at least one fixed combination of k exercices has been chosen.