Probability

1. Reminder on measure theory I

Exercice 0 1. Let $(X_n : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})))_{n \in \mathbb{N}}$ be a sequence of measurable functions

a) Show that $\sup_{n\in\mathbb{N}} X_n$ and $\inf_{n\in\mathbb{N}} X_n$ are measurable

b) Define

 $liminf X_n = \sup_{n \in \mathbb{N}} \inf_{k \ge n} X_k$

$$limsup X_n = \inf_{n \in \mathbb{N}} \sup_{k \ge n} X_k.$$

Show that $liminf X_n$ and $limsup X_n$ are measurable.

2. Let $X : (\Omega, \mathcal{A}) \to (E, \mathcal{E})$ and $Y : (E, \mathcal{E}) \to (F, \mathcal{F})$ be two random variables. Show that $Y \circ X$ is measurable.

3. Let $X : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $Y : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be two random variables.

a) Show that (X, Y) is measurable.

b) Show that X + Y, XY and $\frac{X}{Y}$ (If Y > 0) are measurable.

Exercice 1 1. Consider a sample space Ω . Find $\sigma(\mathcal{C})$ when

- a) $\mathcal{C} = \{A\}, A \subset \Omega$
- b) $\mathcal{C} = \{ B \in \mathcal{P}(\Omega); B \subset A \}, A \subset \Omega$

2. Let $f: (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be defined by $f(x, y) = x^2 + y^2$. Find $\sigma(f)$.

Exercice 2 Suppose that $\mathcal{C} \subset \mathcal{P}(\Omega)$ is closed under finite intersection. Let Q_1 and Q_2 be two measures on $\sigma(\mathcal{C})$ such that $Q_1 = Q_2$ on \mathcal{C} .

a) If Q_1 and Q_2 are probability measures show that $Q_1 = Q_2$ on $\sigma(\mathcal{C})$.

b) If there exists an increasing sequence $(C_n)_{n\in\mathbb{N}}$ of elements of \mathcal{C} such that $\Omega = \bigcup_{n\in\mathbb{N}}C_n$ and $\forall n\in\mathbb{N}, Q_1(C_n) = Q_2(C_n) < \infty$, show that $Q_1 = Q_2$ on $\sigma(\mathcal{C})$.

Exercice 3 Let (A_n) be a sequence of sets. We define

$$liminf A_n = \bigcup_{i \in \mathbb{N}} (\bigcap_{j \ge i} A_j)$$

and

$$limsup A_n = \bigcap_{i \in \mathbb{N}} (\bigcup_{j \ge i} A_j).$$

1) Prove the following relations

$$(liminf A_n)^c = limsup A_n^c,$$

limsup $A_n \cup B_n = limsup A_n \cup limsup B_n$

 $liminf A_n \cap limsup B_n \subset limsup A_n \cap B_n \subset limsup A_n \cap limsup B_n.$

2) Find limit A_n and limit A_n in the following cases:

a) $\forall n \in \mathbb{N}, A_{2n} = [-1, 2 + \frac{1}{n}[\text{ and } A_{2n+1} =] - 2 - \frac{1}{n}, 1].$

b) Let E and F be two subsets of a sample space Ω , $\forall n \in \mathbb{N}$, $A_{2n} = E$ and $A_{2n+1} = F$.

3) Remind and prove the Borel Cantelli Lemma.