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Reminder on Probability theory

This chapter is not an elementary introduction to Probability theory. Here we
just remind some fundamental results that will be used in the sequel. For more
details we refer the reader to [1] and [2].

∀d ∈ N∗, let us denote by B(Rd) the borelian σ-algebra on Rd, <,> the usual
scalar product on Rd and dx the Lebesgue measure on Rd.

0.1 Introduction

0.1.1 Definition

Let (Ω,A, P ) be a probability space.

Definition 0.1.1 A random variable is a function X : (Ω,A, P ) → Rd such that
∀E ∈ B(Rd), X−1(E) ∈ A.

Remark 0.1.1 a) There exists a natural σ-algebra on Ω in order for X to be
measurable. This σ-algebra is defined by σ(X) = {X−1(E);E ∈ B(Rd)} and is
the smallest in the inclusion sense. We can show (exercise) that each random
variable measurable with respect to σ(X) has the form h(X) where h is borelian.
b) The notion of measurability is preserved by elementary algebraic operations and
by passing to the limit. When Ω is a topological space equipped with its borelian
σ-algebra, the continuity implies the measurability.

Definition 0.1.2 For A ⊂ Ω, 1A is defined to be the function fulfilling 1A(x) = 1
if x ∈ A and 1A(x) = 0 if x ∈ Ac. If A ∈ A, 1A is measurable and in this case
σ(A) = {Ω, ∅, A,Ac}.

Random variables allow to transport probabilistic structures:

Proposition 0.1.1 If X : (Ω,A, P ) → Rd is a random variable, the mapping
PX : B(Rd) → R+ defined, ∀E ∈ B(Rd), by PX(E) = P (X−1(E)) is a probability
measure on (Rd,B(Rd)) called the distribution of X.
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Definition 0.1.3 We say that a random variable X has a moment of order p ∈
N∗ if the quantity

E[|X|p] =

∫
Rd

|x|pdPX(x)

is finite. For p ∈ N∗, we define Lp = {X;E[|X|p] < ∞} and if X ∈ Lp,

‖ X ‖p= E[|X|p]
1
p . Remember that (Lp, ‖ X ‖p) is complete (because every sum

that absolutely converges is convergent...).

Example 0.1.1 When d = 1, we say that X follows a gaussian distribution of
mean m and variance σ2 (the standard notation is N (m,σ2)) if PX is absolutely
continuous with respect to dx and if

dPX(x) =
1√

2πσ2
e−

(x−m)2

2σ2 dx.

In this case, X has moments of all orders, in particular, E[X] = m and V ar(X) =
E[(X − E[X])2] = σ2.

Exercise 0.1.1 Let X be a random variable following a N (0, σ2). Show that
∀k ∈ N,

E[X2k] =
(2k)!

2kk!
σ2k.

An useful characterization of probability distributions is given by the following
theorem:

Theorem 0.1.1 a) The characteristic function ΦX : t ∈ Rd → E[ei<t,X>] ∈ C
characterize the distribution of X.
b) If d = 1, the distribution of X is characterized by the distribution function
FX : t ∈ R → P (X ≤ t) ∈ R+.

Example 0.1.2 If X follows a N (m,σ2), then

ΦX(t) = eitme−
σ2t2

2 .

0.2 Notion of independence

0.2.1 Events

Definition 0.2.1 Two events A and B (in A) are independent if P (A ∩ B) =
P (A)P (B). In this case, we use the classical notation A⊥B (This notation will
remain valid for σ-algebras and random variables).
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Definition 0.2.2 A finite collection of events (Ai)1≤i≤n is an independent col-
lection if P (∩i∈IAi) =

∏
i∈I
P (Ai), ∀I ⊂ {1, ..., n}. Often, the events are said to be

mutually independent.

Remark 0.2.1 Warning: If events are pairwise independent they are not mutu-
ally independent in general. In fact, considering the toss of two fair coins we can
show that the events

A=“head on first coin”
B=“tail on second coin”
C=“The same on the two coins”

are pairwise but not mutually independent.

0.2.2 σ-algebras

Definition 0.2.3 Sub σ-algebras (Ai)1≤i≤n of A are independent if one has P (∩1≤i≤nAi) =∏
1≤i≤n

P (Ai), ∀Ai ∈ Ai.

0.2.3 Random variables

Definition 0.2.4 Random variables (Xi)1≤i≤n are independent if the generated
σ-algebras (σ(Xi))1≤i≤n are independent .

We consider for notational simplicity that d = 1. However the results extend
without difficulty to the general case.

Theorem 0.2.1 : In order for X1 and X2 to be independent, it is necessary and
sufficient to have any one of the following conditions holding
a) P(X1,X2) = PX1 ⊗ PX2

b) ∀f, g ∈ Cb(R,R), E[f(X1)g(X2)] = E[f(X1)]E[g(X2)]
c) Φ(X1,X2) = ΦX1ΦX2

Proposition 0.2.1 If X1 et X2 are independent one has V ar(X1+X2) = V ar(X1)+
V ar(X2) and E[X1X2] = E[X1]E[X2]. The last equality implies that two inde-
pendent random variables are uncorrelated, unfortunately the converse is false in
general ( take X1 = X, X2 = X2 with X symmetric). For more details, the
reader can read the forthcoming part on gaussian vectors.

Proposition 0.2.2 If X1 et X2 are two random variables so that the pair (X1, X2)
owns a density, then, X1 and X2 are independent if and only if the density of the
pair is equal to the product of the densities of each component.
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Exercise 0.2.1 (Box-Muller Method) Consider that U1 and U2 are two indepen-
dent uniform random variables on the interval [0, 1]. Show that

G1 =
√
−2log(U1)cos(2πU2) and G2 =

√
−2log(U1)sin(2πU2)

are two independent N (0, 1).

Proof: Let us write

Φ : (x, y) ∈]0, 1[2→ (u =
√
−2log(x)cos(2πy), v =

√
−2log(x)sin(2πy)) ∈ R2−(R+×{0}).

It is easy to prove that Φ is a C1-diffeomorphism with a Jacobian determinant
fulfilling |J(Φ)(x, y)| = 2π

x
. Since u2 + v2 = −2log(x) thus |J(Φ−1)(u, v)| =

1
2π
e−

u2+v2

2 .According to the change of variables theorem, one has for F ∈ Cb(R2,R),∫
]0,1[2

F (Φ(x, y))dxdy =

∫
R2−(R+×{0})

F (u, v)
1

2π
e−

u2+v2

2 dudv.2

0.2.4 Convergence of random variables

Types of convergence

For simplicity we assume that d = 1.

Lemma 0.2.1 (Borel-Cantelli) Let (An)N∗ be a sequence of events in A.

a) If
+∞∑
n=1

P (An) <∞, then

P ({ω ∈ Ω;ω ∈ An for an infinite number of n}) = 0.

b) If the An’s are mutually independent with
+∞∑
n=1

P (An) = +∞, then,

P ({ω ∈ Ω;ω ∈ An for an infinite number of n}) = 1.

Definition 0.2.5 We say that a sequence of random variables (Xn)n≥0converges
toward X almost surely (Xn →

a.s
X) if

P ({ω ∈ Ω;Xn(ω) →
n→∞

X(ω)}) = 1.

Proposition 0.2.3 Using B.C, we can show that Xn →
a.s
X if ∀ε > 0,

+∞∑
n=1

P (|Xn −X| > ε) <∞.
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Lemma 0.2.2 Classical inequalities:

a) (Tchebychev) If X ∈ Lp, λ > 0,

P (|X| > λ) ≤ 1

λp
E[|X|p].

b) (Holder) If X ∈ Lp, Y ∈ Lq with 1
p

+ 1
q

= 1, then (by concavity of the log

ab ≤ ap

p
+ bq

q
...),

E[|XY |] ≤‖ X ‖p + ‖ Y ‖q .

c) (Minkowsky) If X ∈ Lp, Y ∈ Lp (by convexity of xp)

‖ X + Y ‖p≤‖ X ‖p‖ Y ‖p .

Definition 0.2.6 If (Xn)n>0 et X have finite moments of order p ∈ N∗, we say
that (Xn)n>0 converges in Lp toward X (Xn →

Lp
X) if

E[|Xn −X|p] →
n→∞

0.

Definition 0.2.7 We say that a sequence of random variables (Xn)n>0 converges
toward X in probability (Xn →

p
X) if ∀ε > 0

P (|X −Xn| > ε) →
n→∞

0.

Definition 0.2.8 We say that a sequence of random variables (Xn)n>0 converges
toward X in distribution ( Xn →

D
X) if ∀f ∈ Cb(R,R),

E[f(Xn] →
n→∞

E[f(X)].

Proposition 0.2.4 The following propositions are equivalent.
a) Xn →

D
X

b) FXn converges pointwise to FX for all point in the set of continuity of FX
(d = 1)
c) ΦXn converges pointwise to ΦX

Exercise 0.2.2 Let (Gn) be a sequence of Gaussian random variables that con-
verges toward G in L2. Show that G is Gaussian.
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Relation between the different types of convergence

Proposition 0.2.5 a) Xn →
a.s
X ⇒ Xn →

p
X

b) Xn →
L1
X ⇒ Xn →

p
X

c) Xn →
p
X ⇒ Xn →

D
X

d) Si q ≥ p, Xn →
Lq
X ⇒ Xn →

Lp
X

Proof a) comes from proposition 0.2.3.
b) Direct consequence of Tchebychev inequality.
c) Let f ∈ Cb(R,R) and ε > 0,

|E[f(Xn)]−E[f(X)]| ≤ E[|f(Xn)−f(X)|1|Xn−X|>ε]+E[|f(Xn)−f(X)|1|Xn−X|≤ε].

One has E[|f(Xn) − f(X)|1|Xn−X|>ε] ≤ cstP (|Xn − X| > ε) →
n→∞

0. Consider

g ∈ CK(R,R) so that ‖ f − g ‖∞≤ ε,

E[|f(Xn)− f(X)|1|Xn−X|≤ε] ≤ 2ε+ E[|g(Xn)− g(X)|1|Xn−X|≤ε].

The function g being uniformly continuous, ∃η > 0 such that

|x− y| ≤ η ⇒ |g(x)− g(y)| ≤ ε,

thus,

E[|g(Xn)− g(X)|1|Xn−X|≤ε] ≤ ε+ cstP (|Xn −X| ≥ η)

with P (|Xn −X| ≥ η) →
n→∞

0.

d) Direct consequence of Holder inequality. 2

Remark 0.2.2 a) All the other implications are false in general.
b) The a.s convergence is the only type that allows the usual algebraic stabil-
ity. Thus, a good way to overcome mistakes is to come back to the definitions.
(counter-example: Xn = −X where X is symmetric, Xn converges in distribution
toward X and Xn −X converges in distribution toward −2X...).

The following results give partial converses to proposition 0.2.5.

Definition 0.2.9 A family {Xi; i ∈ I} of random variables in L1 is said to be
uniformly integrable (U.I) if

sup
i∈I

E[|Xi|1|Xi|>n] →
n→∞

0.



0.2. NOTION OF INDEPENDENCE 13

Example 0.2.1 a) If I is finite {Xi; i ∈ I} is U.I.

b) if ∃Y ∈ L1 such that ∀i ∈ I |Xi| ≤ Y , {Xi; i ∈ I} is U.I.

Theorem 0.2.2 If Xn →
p
X and if the sequence (Xn) is U.I, then, X ∈ L1 and

Xn →
L1
X.

The following result is a direct consequence of proposition 0.2.3.

Theorem 0.2.3 If Xn →
p
X, then there exists an extraction φ such that Xφ(n) →

a.s

X.

Theorem 0.2.4 If Xn →
D
c, where c is a constant then Xn →

p
c.

Two important results

Theorem 0.2.5 (SLLN) Let (Xn) be a sequence of i.i.d random variables.

a) Suppose that X ∈ L1. Denoting Sn = X1 + ...+Xn, one has

Sn
n

→
a.s and L1

E[X1].

b) If E[|X1|] = +∞ the sequence Sn diverges a.s.

0 50 100 150 200 250 300 350 400 450 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Illustration of the SLLN when X1 ↪→ B(1
2
) and n = 500
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SLLN is not fulfilled when X1 ↪→ C(1) (here n = 10000)

The central limit theorem gives some precisions concerning the speed of con-
vergence in the strong law of large numbers:

Theorem 0.2.6 (CLT) Let (Xn) be a sequence of i.i.d random variables. Sup-
pose that X1 has finite moment of order 2 and put m = E[X1] and σ2 = V ar(X1).
One obtains

Sn−nm√
nσ

→
D
N (0, 1).

!! !" !# $ # " !
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Illustration of the CLT when X1 ↪→ U([0, 1]) and n = 500



0.3. GAUSSIAN VECTORS 15

0.3 Gaussian vectors

Real Gaussian random variables (N (m,σ2)) has been introduced in example 0.1.1.
In higher dimensions, this definition may be extended using the notion of gaussian
vectors.

Definition 0.3.1 Let X = (X1, ..., Xn) be a random vector of Rn, X is said to
be a Gaussian vector if for all x = (x1, ..., xn) in Rn, the real random variable
< x,X > is Gaussian.

Example 0.3.1 If (X1, ..., Xn) are independent Gaussian random variables, then,
X = (X1, ..., Xn) is a Gaussian vector.

As in dimension 1, the law of a Gaussian vector is perfectly described by two
parameters:

Proposition 0.3.1 If X is a Gaussian vector of Rn then, ∀x ∈ Rn,

ΦX(x) = ei<x,m>e−
xtΣx

2

where
m = (E[X1], ..., E[Xn])

and
Σ = [cov(Xi, Xj)]1≤i,j≤n.

In this case, we say that X follows a N (m,Σ).

Corollary 0.3.1 (cf. prop 0.2.1 ) If X = (X1, X2) is a Gaussian vector of R2

then
X1⊥X2 ⇔ cov(X1, X2) = 0.

Exercise 0.3.1 Let (Z,X1, ..., Xn) be a Gaussian vector such that ∀1 ≤ i ≤ n,
Z⊥Xi. Show that Z⊥(X1, ..., Xn).

Exercise 0.3.2 Let G = (G1, ..., Gn) be a n-sample of a N (0, 1), m ∈ Rn and A
be a n×n matrix. Show that m+AG follows a N (m,AAt). Propose an algorithm
to simulate an arbitrary Gaussian vector (cf. exercise 0.2.1).

Proposition 0.3.2 If X follows a N (m,Σ) and if Σ is nonsingular, then, X is
absolutely continuous with respect to the Lebesgue measure on Rn with density

1

(2π)
n
2 (det(Σ))

1
2

e−
1
2
(x−m)tΣ−1(x−m).

If Σ is singular, there exist (c1, ..., cn) ∈ Rn − {(0, ..., 0)} such that

c1X1 + ...+ cnXn = cste with probability one.
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0.4 Conditional expectation

Let X and Y be two random variables taking values in R. It often arises that
we already know the value of X and want to calculate the expected value of Y
taking into account this knowledge. This is the intuitive meaning of conditional
expectation.

0.4.1 Conditioning with respect to events

Let A and B be in A with P (B) > 0. We define

P (A|B) =:
P (A ∩B)

P (B)
.

In the same way, if X ∈ L1, we define

E[X|B] =:
E[X1B]

P (B)
.

0.4.2 Conditioning with respect to discrete random vari-
ables

Let Y be a discrete random variable taking values D = {y1, ....yn, ...} and suppose
that ∀y ∈ D, P (Y = y) > 0.

If A belongs to A, one defines

P (A|Y ) =: φ(Y ) where ∀y ∈ D, φ(y) = P (A|{Y = y}).

Similarly, if X ∈ L1, one defines

E[X|Y ] =: ψ(Y ) where ∀y ∈ D,ψ(y) = E[X|Y = y].

It is very important to notice that P (A|Y ) and E[X|Y ] are random variables.

Remark 0.4.1 : When Y is a continuous random variable, the preceding defi-
nition is meaningless because ∀y ∈ R, P (Y = y) = 0. We have to adopt another
point of view.

0.4.3 Conditioning with respect to σ-algebras

Let (Ω,A, P ) be a probability space, X a random variable in L1 and G a sub
σ-algebra of A.
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Definition 0.4.1 (Theorem) There exists a random variable Z ∈ L1 such that

i) Z is G-measurable

ii) E[XU ] = E[ZU ] ∀U G-measurable and bounded.

Z is denoted by E[X|G] and is called the conditional expectation of X given G.
Moreover, Z is unique up to a.s equality.

Remark 0.4.2 : The preceding result is based on the powerful Radon Nikodym
theorem (paragraph 0.6). Nevertheless, when X ∈ L2, the existence of Z can be
proved using Hilbert space methods. If fact, considering the orthogonal projection
Π of L2(Ω,A, P ) on the closed convex set L2(Ω,G, P ) we show easily that Π(X) =
E[X|G]. Intuitively, E[X|G] is the best approximation of X by G-measurable
random variables.

0.4.4 Conditioning with respect to general random vari-
ables

Let Y be a random variable.

Definition 0.4.2 When X ∈ L1, E[X|Y ] is defined to be E[X|σ(Y )].

According to remark 0.1.1, E[X|Y ] is of the form ψ(Y ) where ψ : R → R is
borelian. Naturally, this definition coincides with the one proposed in paragraph
0.4.2 in the discrete case.

Remark 0.4.3 Using remark 0.1.1, the preceding definition may be rewritten in
the following way

i) E[X|Y ] is σ(Y )-measurable

ii) E[Xg(Y )] = E[E[X|Y ]g(Y )] ∀g borelian and bounded.

0.4.5 Conditional distribution

Let us consider a pair (X, Y ) of real random variables in L1. Suppose that this
pair owns a density f(X,Y ) with respect to the Lebesgue measure on R2. Thus,
the marginal densities of X and Y are given by

fX(x) =

∫
R
f(X,Y )(x, y)dy and fY (y) =

∫
R
f(X,Y )(x, y)dx.

When X⊥Y , one has f(X,Y ) = fXfY . If the condition of independence is re-
laxed, we obtain the following disintegration formula : f(X,Y )(x, y) = fX|Y (x, y)fY (y)
where

fX|Y (x, y) =
f(X,Y )(x, y)

fY (y)
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if fY (y) 6= 0 and fX|Y (x, y) = 0 otherwise. The function fX|Y is called the
conditional density of X given Y . In fact, if φ satisfies φ(X) ∈ L1,

E[φ(X)|Y ] = Φ(Y ) with Φ(y) =

∫
R
φ(x)fX|Y (x, y)dx.

0.4.6 Properties of conditional expectation

Classical properties of expectation

Proposition 0.4.1 Let X and Y be two random variables in L1 and G a sub
σ-algebra of A.

a) (positivity) If X ≥ 0 P -a.s, E[X|G] ≥ 0 P -a.s.

b) (linearity) If (α, β) ∈ R2, E[αX + βY |G] = αE[X|G] + βE[Y |G] P -a.s.

c) (monotony) If X ≥ Y P -a.s, E[X|G] ≥ E[Y |G] P -a.s. (Consider {E[Y |G]−
E[X|G] ≥ ε}.)

d) (Beppo-lévy) If Xn is a sequence of non negative random variables in L1

with Xn ↑ X P -a.s, then E[Xn|G] ↑ E[X|G] P -a.s.

e) (Fatou) If Xn is a sequence of non negative random variables in L1, then
E[lim inf

n
Xn|G] ≤ lim inf

n
E[Xn|G] P -a.s.

f) (Dominated convergence) If Xn is a sequence of random variables in L1 such
that Xn →

a.s
X and ∀n ∈ N, Xn ≤ X ∈ L1, then, E[Xn|G] →

a.s and L1

E[X|G].

g) (Jensen) If ψ : R → R is a convex function such that ψ(X) ∈ L1, then,
ψ(E[X|G]) ≤ E[ψ(X)|G] P -a.s.

Remark 0.4.4 We deduce from g) that the conditional expectation is a contract-
ing operator on Lp spaces.

Specific properties

Proposition 0.4.2 Let X and Y be two random variables in L1 and G a sub
σ-algebra of A.

a) E[E[X|G]] = E[X]

b) If X is G-measurable, E[X|G] = X P -a.s.
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c) (Taking out what is known) If Y is G-measurable and bounded, E[XY |G] =
Y E[X|G] P -a.s.

d) (Role of independence) If σ(X)⊥G, E[X|G] = E[X] P -a.s.

e) (Tower property) If G ′ is a sub σ-algebra of A such that G ′ ⊂ G, then,
E[E[X|G]|G ′] = E[X|G ′] P -a.s.

f) If (Gi)i∈I is a collection of sub σ-algebras of A, the family (E[X|Gi])i∈I is
U.I.

Proof: We only give the proof of f), the others are left to the reader. According
to Jensen inequality for conditional expectation,

E[|E[X|Gi]|1|E[X|Gi]|>n] ≤ E[E[|X| |Gi]1|E[X|Gi]|>n] = E[|X|1|E[X|Gi]|>n].

But, from Tchebychev inequality one obtains

P (|E[X|Gi]| > n) ≤ E[|E[X|Gi]|]
n

≤ E[E[|X| |Gi]]
n

=
E[|X|]
n

.

We conclude using the following lemma:

Lemma 0.4.1 Si X ∈ L1, ∀ε > 0, ∃δ > 0, P (A) < δ ⇒ E[|X|1A] < ε.

2

The preceding properties are often sufficient to compute conditional expecta-
tions. We only come back to the definition for more difficult cases as we can see
in the following proposition.

The following result will be useful in the study of the Black-Scholes model and
more generally to prove Markov properties of stochastic processes.

Proposition 0.4.3 If σ(X)⊥G and if Y is G-measurable, then, for all borelian
function Φ : R2 → R such that E[|Φ(X, Y )|] <∞, one has

E[Φ(X, Y )|G] = ψ(Y ) where ψ(y) = E[Φ(X, y)].

Proof: We have ψ(y) =
∫

R Φ(x, y)dPX(x) and the measurability of ψ is a
classical consequence of Fubini’s theorem. For G ∈ G, we set Z = 1G. We deduce
from the hypotheses that P(X,Y,Z) = PX ⊗ P(Y,Z), thus,

E[Φ(X, Y )1G] =

∫
R

∫
R2

Φ(x, y)zdP(Y,Z)(y, z)dPX(x).
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By Fubini’s theorem,

E[Φ(X, Y )1G] =

∫
R2

ψ(y)zdP(Y,Z)(y, z)

so
E[Φ(X, Y )1G] = E[ψ(Y )1G].

2

0.4.7 Conditional expectation and Gaussian vectors

Proposition 0.4.4 Let (Z,X1, ..., Xn) be a Gaussian vector. Then, there exist
real numbers (a, b1, ..., bn) such that

E[Z|X1, ..., Xn] = a+
n∑
i=1

Xibi.

Proof: Consider the closed sub vector space (of finite dimension) of L2 spanned
by (1, X1, ..., Xn). Let Π denotes the orthogonal projection on this closed and con-

vex set. Thus, there exist real numbers (a, b1, ..., bn) such that Π(Z) = a+
n∑
i=1

Xibi.

For Y = Z − Π(Z), one obtains classically E[Y ] = 0 and E[Y Xi] = 0. In this
way, cov(Y,Xi) = 0. The random vector (Y,Xi) being Gaussian, we deduce from
corollary 0.3.1, Y⊥Xi. By exercise 0.3.1, Y⊥(X1, ..., Xn) and E[Y |X1, ..., Xn] =

E[Y ] = 0, thus, E[Z|X1, ..., Xn] = Π(Z) = a+
n∑
i=1

Xibi.2

0.5 Stochastic processes

0.5.1 Introduction

In order to model systems depending on time and hazard the natural mathemat-
ical object are stochastic processes: a probability space (Ω,A, P ) and a function
(t, ω) → Xt(ω). For fixed t, the state of the system is a random variable Xt, on
the other hand, a particular evolution of this system (i.e for fixed ω) is represented
by the function t→ Xt(ω) called a trajectory (or a sample path).

Definition 0.5.1 A stochastic process on (Ω,A, P ), indexed by an arbitrary set
T ⊂ R+, is a collection (Xt)t∈T of random variables on (Ω,A, P ) with values on
a space E (for us, E = R).

Several notions exist to compare stochastic processes taking into account time
evolution.
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Definition 0.5.2 Two stochastic processes (Xt)t∈T and (Yt)t∈T are equidistributed
if, ∀n ∈ N∗, ∀(t1, ..., tn) ∈ T n

(Xt1 , ..., Xtn) =
D

(Yt1 , ..., Ytn).

In this case we also say that they have the same finite-dimensional distributions.

Definition 0.5.3 A stochastic process (Xt)t∈T is a version of the process (Yt)t∈T
if, ∀t ∈ T ,

Xt = Yt P − a.s.

Such processes are also said to be stochastically equivalent.

Definition 0.5.4 Two stochastic processes (Xt)t∈T and (Yt)t∈T are indistinguish-
able (or equivalent up to evanescence) when

P ({ω|∀t ∈ T, Xt(ω) = Yt(ω)}) = 1

Remark 0.5.1 These definitions are more and more restrictive. (exercises)

Definition 0.5.5 We say that the sample paths of a stochastic process are con-
tinuous (or monotonic, or cadlag) if, for P almost all ω, t ∈ T → Xt(ω) is
continuous (or monotonic, or cadlag). For simplicity we say that the process is
continuous (or monotonic, or cadlag).

Exercise 0.5.1 Let (Xt)t∈T and (Yt)t∈T be stochastic processes.

1) Supposing that (Xt)t∈T and (Yt)t∈T are right continuous, show that if (Xt)t∈T
is a version of (Yt)t∈T , then they are indistinguishable.

2) On the probability space ([0, 1],B([0, 1]), dx), let (Xt)t∈R+ be the process
defined by Xt(ω) = ω + at and (Yt)t∈R+ the process defined by Yt(ω) = ω + at if
t 6= ω and Yt(ω) = 0 otherwise. Show that (Xt)t∈R+ is a version of (Yt)t∈R+ but
that they are not indistinguishable.

For simplicity, we suppose from now on that T = R+. Let (Xt)t∈T be a
stochastic process. For fixed times 0 ≤ t1 ≤ ... ≤ tn we denote by Pt1,...,tn the
distribution of the random vector (Xt1 , ..., Xtn). Remark that for all collection of
borelian sets (A1, ..., An) and for tn+1 ≥ tn, one has

Pt1,...,tn(A1 × ...× An) = Pt1,...,tn,tn+1(A1 × ...× An × Ω). (1)

The following result due to Kolmogorov ensures the existence of a stochastic
process related to a family of finite-dimensional marginal distributions provided
that a natural consistency condition of type (1) is fulfilled. This theorem is very
useful to show the existence of particular stochastic processes.



22 CONTENTS

Theorem 0.5.1 Consider a collection of distributions

{Pt1,...,tn ;n ≥ 1, 0 ≤ t1 ≤ ... ≤ tn}

such that:

a) Pt1,...,tn is a distribution on Rn

b) If {0 ≤ s1 ≤ ... ≤ sm} ⊂ {0 ≤ t1 ≤ ... ≤ tn} then

π∗Pt1,...,tn = Ps1,...,sm

where π is the natural projection from Rn on Rm.

There exists a stochastic process (Xt)t∈R+ with marginal finite-dimensional dis-
tributions given by the {Pt1,...,tn}′s.

A stochastic process being a random function depending on two arguments,
we have the following notion of measurability.

Definition 0.5.6 A stochastic process (Xt)t∈R+ is measurable if the function

(t, ω) ∈ (R+,B(R+))× (Ω,A) → Xt(ω) ∈ (R,B(R))

is measurable i.e ∀T ∈ R+, ∀E ∈ B(R),

{(t, ω); 0 ≤ t ≤ T,Xt(ω) ∈ E} ∈ B([0, T ])⊗A.

Remark 0.5.2 If (Xt)t∈R+ is measurable and f ∈ Cb(R,R), the random variable

Yt =
∫ t

0
f(Xs)ds is well defined.

Exercise 0.5.2 Show that a right continuous process (or a left continuous one)
is measurable. (Hint: if t ≤ T , remark that Xt = X0 + limnXn with Xn =
2n−1∑
k=0

X (k+1)T
2n

1
] kT
2n ,

(k+1)T
2n ]

.)

Definition 0.5.7 Classically we denote

L2(Ω× [0, T ]) =

{
(Xt)t∈[0,T ] measurable;E

[∫ T

0

X2
sds

]
<∞

}
the Hilbert space of squared integrable stochastic processes.
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0.5.2 Filtrations, adapted processes

Let (Ω,A, P ) be a probability space.

Definition 0.5.8 A non decreasing collection (Ft)t∈R+ of sub σ-algebras of A is
called a filtration. This filtration is said to be complete if ∀t ∈ R+, N ⊂ Ft where

N = {N ⊂ Ω; ∃A ∈ A, N ⊂ A,P (A) = 0}.

Remark 0.5.3 Intuitively, Ft represents the information available at time t.
Moreover, we may always boil down to the complete case changing Ft into σ(N ∪
Ft).

From now on, according to the preceding remark, we will suppose
that all the considered filtrations are complete.

Definition 0.5.9 A stochastic process (Xt)t∈R+ is adapted to the filtration (Ft)t∈R+

if Xt is Ft measurable.

Remark 0.5.4 A stochastic process (Xt)t∈R+ is always adapted to its natural
filtration FX

t = σ(Xs; 0 ≤ s ≤ t).

Remark 0.5.5 There are several advantages to work with complete filtrations,
in particular,

a) if Xt =
a.s

Yt and if Xt is Ft measurable ⇒ Yt is Ft measurable (thus, any

version of an adapted process is an adapted process).

b) if Xn
t →
a.s
Xt and if ∀n ≥ 0, Xn

t is Ft measurable ⇒ then Xt is Ft measurable.

The preceding dynamic (related to a filtration) notion of measurability is re-
strictive. In fact, it omits to take into account that a stochastic process is a
random function depending on two arguments.

Definition 0.5.10 A stochastic process (Xt)t∈R+ is progressively measurable if,
∀T > 0 the function

(t, ω) ∈ ([0, T ],B([0, T ]))× (Ω,FT ) → Xt(ω) ∈ (R,B(R))

is measurable.

Exercise 0.5.3 For 0 ≤ t1 ≤ ... ≤ tn = T , let Fti be a Fti-measurable random
variable and

Xt =
n−1∑
i=1

Fti1[ti,ti+1[(t). (2)

Show that (Xt)t∈[0,T ]is progressively measurable. We will denote E([0, T ]×Ω) for
the elements of the form (2) with Fti ∈ L2(Fti).
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Remark 0.5.6 A progressively measurable process is measurable and adapted.

Exercise 0.5.4 When (Xt)t∈R+ is progressively measurable show that the process
(Yt)t∈R+ defined in remark 0.5.2 is adapted (Use Fubini’s theorem).

Proposition 0.5.1 A right continuous process (Xt)t∈R+ (or left continuous ) is
progressively measurable when it is adapted.

Proof: In the left continuous case we put Xn(t) = X[n t
T

]T
n
. One has ∀t ∈ R+,

Xn
t →
a.s
Xt. Now, ∀B ∈ B(R),

{(t, ω); 0 ≤ t ≤ T,Xn(t) ∈ B} = [0,
T

n
[×{X0 ∈ B} ∪ ..... ∈ B([0, T ])×FT

and the result follows. In the right continuous case we use the same approach
with Xn(t) = Xinf(T,([n t

T
]+1)T

n
). 2

Definition 0.5.11 We denote

L2
prog(Ω× [0, T ]) =

{
(Xt)t∈[0,T ] prog meas;E

[∫ T

0

X2
sds

]
<∞

}
.

Theorem 0.5.2 The space L2
prog(Ω × [0, T ]) equipped with its natural norm is

complete. Moreover, E([0, T ]× Ω) is dense in L2
prog(Ω× [0, T ]).

Proof: We only prove the second part of the theorem, the first one being a
classical result of probability theory.

First, let us introduce an approximation procedure in the deterministic case.
When f ∈ L2([0, T ], dx), we define ∀n ∈ N∗, ∀t ∈ [0, T ],

Pn(f)(t) = n
n−1∑
i=1

∫ i
n

i−1
n

f(s)ds1] i
n
, i+1

n
](t).

This linear operator Pn is a contraction, in fact, if t ∈] i
n
, i+1
n

]

[Pn(f)(t)]2 ≤ n

∫ i
n

i−1
n

f 2(s)ds

thus ∫ T

0

[Pn(f)(t)]2dt ≤
∫ T

0

[f(t)]2dt.
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We can also show that ∀f ∈ CK([0, T ],R),

Pn(f) →
L2([0,T ])

f (3)

and extend this result for f ∈ L2([0, T ]) by density.

Now this method is extended to L2
prog(Ω × [0, T ]). We put ∀X ∈ L2

prog(Ω ×
[0, T ]), ∀t ∈ [0, T ], for almost all ω,

Pn(Xt(w)) = Pn(X.(ω))(t).

Since X ∈ L2
prog(Ω × [0, T ]), Pn(X) ∈ E([0, T ] × Ω) because (exercise 0.5.4)∫ i

n
i−1
n

Xsds is F i
n

measurable. Now it is easy to prove, using (3) and the dominated

convergence theorem, the convergence of Pn(X) toward X in L2
prog(Ω × [0, T ]):

X belonging to L2
prog(Ω × [0, T ]), for almost all ω, X.(ω) ∈ L2([0, T ]), thus, we

deduce from (3) that ∫ T

0

(Pn(Xs)−Xs)
2ds→

a.s
0

being bounded (Minkowski inequality) by 4‖X.(ω)‖2
L2([0,T ]) ∈ L2(P ). 2

0.5.3 Gaussian processes

Definition 0.5.12 A stochastic process (Xt)t∈R+ is Gaussian if, ∀n ∈ N∗, ∀t1, ..., tn ∈
R+, the random vector (Xt1 , ..., Xtn) is Gaussian.

The distribution of a gaussian process is entirely described by two functional
parameters, the mean function m : t → E[Xt] and the covariance function
Γ : (s, t) → E[(Xt − m(t))(Xs − m(s))] that is symmetric and non-negative
in the sense that ∀n ∈ N∗, ∀t1, ..., tn ∈ R+, the square matrix [Γ(ti, tj)]1≤i,j≤n is
symmetric non-negative.

In fact we have the following result derived from the Kolmogorov theorem.

Proposition 0.5.2 Let m : R+ → R be an arbitrary function and Γ : (R+)2 → R
a symmetric and non-negative function. Then, there exists a Gaussian process
with mean function m and covariance function Γ.

Example 0.5.1 Show that (s, t) ∈ (R+)2 → inf(s, t) is non-negative. (Hint:
You may use an induction reasoning)
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0.5.4 Martingales in continuous time

We refer the reader to [6] for an overview of the theory of martingales.

Let (Ω,A, P ) a probability space and (Ft)t∈R+ a filtration on A.

Definition 0.5.13 An adapted process (Mt)t∈R+ with values in L1 is:

- a martingale if ∀t ≥ s, E[Mt|Fs] = Ms.

- a supermartingale if, ∀t ≥ s, E[Mt|Fs] ≤Ms.

- a submartingale if, ∀t ≥ s, E[Mt|Fs] ≥Ms.

Remark 0.5.7 A martingale (Mt) fulfills ∀t ≥ 0 E[Mt] = E[M0].

Example 0.5.2 If X ∈ L1, Mt =: E[X|Ft] is, according to proposition 0.4.2, a
martingale.

The following results will be useful in the sequel.

Proposition 0.5.3 Let (Mt)t∈R+ be a square integrable martingale, then, ∀s ≤ t,
one has

E[(Mt −Ms)
2|Fs] = E[M2

t −M2
s |Fs].

Proof: One has

E[(Mt −Ms)
2|Fs] = E[M2

t |Fs]− 2E[MtMs|Fs] + E[M2
s |Fs]︸ ︷︷ ︸

M2
s

.

The result follows from E[MtMs|Fs] = M2
s .2

Proposition 0.5.4 A square integrable martingale (Mt)t∈R+ has orthogonal in-
crements.

Proof: One has to prove that for t4 > t3 ≥ t2 > t1,

E[(Mt4 −Mt3)(Mt2 −Mt1)] = 0.

This equality is obtained conditioning by Ft3 .2

Proposition 0.5.5 Let (Mt)t∈R+ be a square integrable martingale such that

there exists (Φt)t∈[0,T ] ∈ L2(Ω × [0, T ]) fulfilling ∀0 ≤ t ≤ T , Mt =
∫ t

0
Φsds.

Then

P ({ω;∀0 ≤ t ≤ T,Mt = 0}) = 1.
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Proof: According to the preceding proposition,

E[M2
t ] = E

( n∑
i=1

M it
n
−M (i−1)t

n

)2
 = E

[
n∑
i=1

(
M it

n
−M (i−1)t

n

)2
]
.

From Schwartz’s inequality,

E[M2
t ] = E

 n∑
i=1

(∫ it
n

(i−1)t
n

Φsds

)2
 ≤ t

n
E

[∫ t

0

Φ2
sds

]
.

Let n go to infinity and use the continuity of the process (Mt)t∈R+ give the result.2

For simplicity, the notion of stopping time is not tackled in this lecture even
if it is fruitful in martingale theory. However we state the following fundamental
result.

Theorem 0.5.3 ( Doob’s inequality) Let (Mt)t∈R+ be a square integrable martin-
gale with continuous paths, then, ∀T ∈ R+,

E[ sup
0≤t≤T

|Mt|2] ≤ 4E[|MT |2].

From now on, M2([0, T ]) denotes the space of square integrable martingales on
[0, T ] with continuous trajectories (quotiented by the equivalence relation M ∼
M ′ if and only if M and M ′ are indistinguishable). If (Mt)t∈[0,T ] ∈M2([0, T ]) we

denote by ‖‖M2 the function ‖M‖M2 = E[|MT |2]
1
2 .

Proposition 0.5.6 The function ‖‖M2 defined on M2([0, T ]) is a norm. The
space M2([0, T ]) equipped with ‖‖M2 is an Hilbert space.

Proof: We admit the second point. The first one is a direct consequence of
Doob’s inequality.2

Remark 0.5.8 For the completeness of M2([0, T ]), the completeness of the fil-
tration is necessary.

0.6 Radon-Nikodym’s theorem

Definition 0.6.1 Let P and Q be two probability measures defined on the same
probability space (Ω,A).
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a) P is said to be absolutely continuous with respect to Q (notation: P � Q)
if ∀A ∈ A, Q(A) = 0 ⇒ P (A) = 0.
b) P and Q are said to be equivalent (notation: P ∼ Q) if ∀A ∈ A, P (A) = 0 ⇔
Q(A) = 0.
c) P and Q are said to be singular (notation: P⊥Q) if ∃A ∈ A, such that
P (A) = 0 and Q(A) = 1.

The following result will be useful for a good understanding of change of prob-
abilities in financial models.

Theorem 0.6.1 (Radon-Nikodym) Let P and Q be two probability measures de-
fined on the same probability space (Ω,A). Then P � Q if and only if there
exists a random variable Z ≥ 0 Q−integrable (unique up to Q a.s equality) ful-
filling EQ[Z] = 1 such that, ∀A ∈ A,

P (A) = EQ[Z1A].

The random variable Z is called the Radon-Nikodym derivative of P with respect
to Q. Usually it is denoted by Z =: dP

dQ
.

Remark 0.6.1 If P ∼ Q one has Z > 0 Q (or P ) a.s, in this case, dP
dQ

= 1
dQ
dP

.

Exercise 0.6.1 The aim is to prove the theorem-definition 0.4.1. For X ∈
L1(Ω,A, P ), we want to show the existence of E[X|G].

a) Prove that we can suppose X ≥ 0.

b) Show that the function defined on (Ω,A) by

Q(A) =

∫
A

XdP

is a bounded non-negative measure such that Q� P .

c) Show that the same holds if Q is restricted to (Ω,G).

d) Using Radon-Nikodym theorem, propose a natural candidate for E[X|G].

Example 0.6.1 (A first step toward Girsanov theorem) Consider a random vari-
able X following, under a probability P , a N (m,σ2). Here we want to find a
probability Q equivalent to P such that, under Q, X follows a N (0, σ2). Consider
the random variable

L = e−
mX
σ2 e+

m2

2σ2 .
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According to example 0.1.2, we can see easily that EP [Z] = 1, thus we define the
probability Q by L = dQ

dP
. Since

EQ[eitX ] = EP [LeitX ] = e−
σ2t2

2

the result follows.
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Chapter 1

Brownian motion

1.1 Short history

We refer the reader to [9] for an historical overview.

Brownian motion is probability the most famous and the most important
stochastic process. It is a beautiful example of fruitful links between mathe-
matics and physics.

Brownian motion is generally regarded as having been discovered by the botanist
Robert Brown in 1827. While Brown was studying pollen particles floating in wa-
ter in the microscope, he observed tiny particles in the pollen grains executing a
jittery motion. After repeating the experiment with particles of dust, he was able
to conclude that the motion wasn’t due to pollen being “alive” but the origin of
the motion remained unexplained. Later (1877) this phenomenon was partially
explained by Delsaux: Due to the thermal agitation, a small pollen particle would
receive a random number of impacts of random strength and from random di-
rections in any short period of time. This random bombardment by the big
molecules of the fluid would cause a sufficiently small particle to move exactly
just how Brown described it. (See “http://chaos.nus.edu.sg/simulations/” for an
interesting numerical simulation). The first one to give a theory of Brownian mo-
tion was Louis Bachelier in 1900 in his PhD thesis “The theory of speculation”
(see [2]). He used this object for modeling assets on which contracts trade and
underline its Markov properties.

However, it was only in 1905 ([6]) that Albert Einstein, using a probabilistic
model, proposed a “good” mathematical definition and presented it as a way to
indirectly confirm the existence of atoms and molecules:

Let Xt be the position at time t of a small particle in a fluid. Suppose that

a) Xt+h −Xt is independent of σ(Xs; s ≤ t).
b) the distribution of Xt+h −Xt doesn’t depend on t.

33
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c) the trajectories are continuous.

The first hypothesis means that the evolution of the trajectory during the
interval [t, t + h] is only due to the thermal impacts during this period. The
inertia (i.e the mass of the particle) is neglected.

The second one implies that the physical environment is the same along the
time (no variations of temperature).

The third one ensures that the particle doesn’t jump.
We have to remark for the moment that no Gaussian hypotheses are assumed.

Nevertheless, we will see hereafter that the normal distribution naturally derives
form a), b) and c).

In these seminal works Einstein performed the transition density of such a
process P (Xt+h ∈ dy|Xh = x) = q(t, x, y)dy and showed that this density is
linked to the heat equation (the function u(t, x) = E[f(Xt+h)|Xh = x] is the

unique solution of the ordinary differential equation −∂u(t,x)
∂t

+ 1
2
∂2u(t,x)
∂x2 = 0 with

initial condition u(0, .) = f).
A remarkable bridge between probability theory and analysis was build.
From a mathematical point of view, the rigorous proof of the existence of such

a stochastic process will appear later (1923) in the works of N.Wiener [16]. Sur-
prisingly, the study of the properties of the “old” Brownian motion, initiated by
P. Lévy [12], is still an active field of research. Moreover, the mathematical model
of Brownian motion has several real-world applications. An often quoted exam-
ple is stock market fluctuations. Another example is the evolution of physical
characteristics in the fossil record.

Finally, the french mathematician Wendelin Werner has recently obtain (2006)
the Fields medal for his entire work on random phenomena. (see for example his
lecture “http://www.canalu.fr/canalu/chainev2/utls/programme/324388617/
sequence id/1010501222/format id/3003/” in the Université de tous les sasees).
This is the first time the medal was awarded to a probabilist. It’s an acknowl-
edgment of works on random walks and Brownian motion, which model many
physical phenomena.

Before technical considerations, let us start with the following result that is
important to understand the definition of the Brownian motion that will be given
hereafter.

Lemma 1.1.1 Let Xt be a stochastic process fulfilling assumptions a), b) and
c). Suppose that X0 = 0, then , there both exist m and σ2 such that Xt follows a
N (mt, σ2t).

Proof: For simplicity we suppose that

sup
t≤1

E[X2
t ] < +∞
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(this fact may be derived from the hypotheses as you can see in [8]). In this case,
the trajectories of the stochastic process are continuous in L1. In fact , for ε > 0,
we derive from

E[|Xt −Xs|] = E[|Xt −Xs|1|Xt−Xs|>ε] + E[|Xt −Xs|1|Xt−Xs|≤ε]

and from Holder inequality that

E[|Xt −Xs|] ≤ E[|Xt −Xs|2]
1
2P (|Xt −Xs| > ε)

1
2 + ε.

The conclusion follows because the pathwise continuity implies the continuity in
probability.

For n ∈ N∗, we have Xnt = Xt + (X2t−Xt) + ...+ (Xnt−X(n−1)t), thus, using
b), ∀n ∈ N,

E[Xnt] = nE[Xt].

For (p, q) ∈ N× N∗, we deduce from the preceding relation that

pE[X1] = E[Xp] = E[X( p
q
)q] = qE[X p

q
],

so, ∀s ∈ Q, E[Xs] = sE[X1]. From the continuity of the trajectories in L1, we
obtain,

∀t ∈ R, E[Xt] = tE[X1] = tm.

In the same way, we can prove that

E[(Xs −ms)2] = sE[(X1 −m)2],∀s ∈ Q,

and this equality extends to whole R because the function t→ E[(Xt −mt)2] is
non-decreasing: using b),

E[(Xt+h −m(t+ h))2] = E[(Xt −mt)2] + E[(Xh −mh)2] ≥ E[(Xt −mt)2].

Writing, ∀n ∈ N∗,

Xt = (X t
n
−X0) + ...(Xnt

n
−X (n−1)t

n

)

where the random variables (X kt
n
−X (k−1)t

n

) are i.i.d with means tm
n

and variances

tσ2

n
, a classical argument (the Taylor expansion of the characteristic function used

in the proof of the classical C.L.T) gives the result. (see [5]). 2
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1.2 Definition, existence, simulation

1.2.1 Definition

Let (Ω,A, P ) be a probability space. To lighten the notations, we work on the
bounded interval [0, T ] with T = 1 (everything remains ok if we take a general T
or R+).

The Brownian motion (Bt)t∈[0,1] is a continuous Gaussian process with inde-
pendent and stationary increments. In other words:

Definition 1.2.1 Standard Brownian motion (B.M) is a stochastic process (Bt)t∈[0,1]

fulfilling :

a) B0 = 0 P -a.s.

b) B is continuous i.e t→ Bt(w) is continuous for P almost all w.

c) B has independent increments: For Si t > s, Bt − Bs is independent of
FB
s = σ(Bu, u ≤ s).

d) the increments of B are stationary and gaussian: For t > s, Bt−Bs follows
a N (0, t− s).

Remark 1.2.1 a) As mentioned in paragraph 0.5, the filtration (FB
t )

t∈[0,1]
is sup-

posed to be complete.
b) From an adaptation of the proof of lemma 1.1.1 we deduce that assumption

d) can be replaced by the following “The increments of B are stationary, centered,
square integrable with V ar(B1) = 1”.

c) By the monotone class theorem, we show that c) is equivalent to “For t1 ≤
... ≤ tn ≤ s < t, Bt −Bs⊥(Bt1 , ..., Btn)” (see [4]).

We have the following equivalent definition linked to the theory of Gaussian
processes

Proposition 1.2.1 A stochastic process (Bt)t∈[0,1] is a B.M if and only if it is
a continuous and centered gaussian process with covariance function Γ[s, t] =
inf(s, t).

Proof: ⇒ For arbitrary t1 ≤ ... ≤ tn the random vector (Bt1 , Bt2−Bt1 , ..., Btn−
Btn−1) is a Gaussian vector since Bt1 , Bt2 − Bt1 ,..., Btn − Btn−1 are independent
Gaussian random variables . Thus, by linear combinations (Bt1 , ..., Btn) is also
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a Gaussian vector. So, B.M is a centered and continuous Gaussian process such
that: for t > s

cov(Bt, Bs) = E[BtBs] = E[(Bt −Bs)Bs] + E[(Bs)
2] = s.

⇐ We prove each point of the definition

a) E[(B0)
2] = 0 thus B0 = 0 P -a.s.

b) from the hypotheses B is continuous.
c) For t1 ≤ ... ≤ tn ≤ s < t the random vector (Bt1 , ...Btn , Bt − Bs) is

gaussian with cov(Bt − Bs, Bti) = 0. Thus (corollary and exercise 0.3.1) Bt −
Bs⊥(Bt1 , ..., Btn) and from the remark above, Bt − Bs is independent of FB

s =
σ(Bu, u ≤ s). d) finally, for s < t, Bt−Bs follows a centered Gaussian distribution
with V ar(Bt −Bs) = t+ s− 2inf(s, t) = t− s. 2

1.2.2 Existence, construction, simulation

Several methods, more or less abstract, permit to construct the B.M. In general,
these methods need non-trivial mathematical results.

Randomization of an Hilbert space

Let (gn)n∈N be i.i.d standard Gaussian random variables. We consider the Hilbert
space H = L2([0, 1], dx) and (χn)n∈N an associated orthonormal basis. We set,
∀t ∈ [0, 1],

Bt =
∞∑
n=0

∫ t

0

χn(s)ds gn

(where the serie converges in L2). According to exercise 0.2.2, the random variable
Bt is Gaussian, centered, with variance

V ar(Bt) =
∞∑
n=0

(

∫ t

0

χn(s)ds)
2 = t.

In the same way, we can show easily that (Bt)t∈[0,1] is a Gaussian process
with zero mean and covariance function Γ[s, t] = inf(s, t). Using proposition
1.2.1, it remains to prove the continuity. A detailed study of the random serie
(studying the a.s uniform convergence) is sufficient to conclude but is technical
([13]). Another point of view is to use the powerful Kolmogorov theorem (see
[1]):

Theorem 1.2.1 (Continuity criteria) Let (Xt)t∈R be a stochastic process fulfill-
ing the following relation, ∀T > 0, ∃CT ≥ 0, ∀0 ≤ s < t ≤ T ,

E[|Xt −Xs|p] ≤ CT |t− s|α (1.1)
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where p > 0 and α > 1. Then, there exists a version of X with continuous paths.

In the case of the Brownian motion, for ∀0 ≤ s < t ≤ 1, Bt − Bs follows a
N (0, t− s) thus, from exercise 0.1.1,

E[|Bt −Bs|2k] =
(2k)!

2kk!
(t− s)k.

The result follows taking for example k = 2.

If we explicitly chose (χn)n∈N, we have the two following so-called methods:

Wiener representation (1923) ([16])

Taking for (χn)n∈N the trigonometric basis, we obtain a closed formula for the B.M
based on random Fourier series and discovered by Wiener . From an historical
point of view this result is the first rigorous construction of the B.M.

Bt =

√
8

π

∞∑
n=1

sin(nt)

n
gn (1.2)

where the serie a.s uniformly converges on [0, 1]. Moreover E[Bt] = 0 and a
classical result gives

E[(Bt)
2] =

8

π2

∞∑
n=1

sin2(nt)

n2
= t.

Paul Lévy construction (midpoint method)

In 1939, Paul Lévy proposed a very simple construction of the Brownian motion
taking for (χn)n∈N the Haar basis. This approach is very important because it has
permitted to prove important results concerning the regularity of the Brownian
paths. In this paragraph we present the intuitive aspects and we refer the reader
to [14] for more details.

For s < t we know that (proposition 1.2.1) the random vector

(B t+s
2
, Bt, Bs)

is Gaussian. Then, we put

Z = B t+s
2
− 1

2
(Bt +Bs)

that is a Gaussian random variable with E[Z] = 0 and V ar(Z) = 1
4
(t− s). Using

corollary 0.3.1, we have Z⊥(Bt, Bs) because cov(Z,Bt) = 0 and cov(Z,Bs) = 0.

Thus Z may be written as Z =
√
t−s
2
Gs,t whereGs,t is a standard Gaussian random

variable independent of (Bt, Bs).
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Remark 1.2.2 We can show that Gs,t⊥Bu when u ≤ s or u ≥ t.

To conclude

B t+s
2

=
1

2
(Bt +Bs) +

√
t− s

2
Gs,t

Gs,t⊥Bu when u ≤ s or u ≥ t.

Now we can simulate the Brownian trajectory:

1) We generate a family (Gi)i∈N of i.i.d standard Gaussian random variables
(exercise 0.2.1).

2) We put B1 = G1

3) We put B 1
2

= 1
2
(B1 +G2)

4) We put B 1
4

= 1
2
(B 1

2
+ 1√

2
G3)

5) We put B 3
4

= 1
2
(B 1

2
+B1 + 1√

2
G4)

6) Etc......

Using the software SCILAB we obtain the following:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
!1.2

!1.0

!0.8

!0.6

!0.4

!0.2

0.0

0.2
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Donsker invariance principle

The Donsker invariance principle is a functional extension of the C.L.T. Consider
a family (Uk)k∈N∗ of centered and independent random variables with variances
equal to 1. For n ∈ N∗, we set Sn = U1+ ...+Un the n−th partial sum. According
to the C.L.T, Sn√

n
→
D
N (0, 1) and more generally, ∀t ∈ [0, 1],

S[nt]√
n
→
D
N (0, t) (distribution of Bt).

The linear interpolation of the points of the form ( k
n
, Sk√

n
)0<k≤n is defined: ∀t ∈

[0, 1], we put

Xn(t) =
1√
n

 [nt]∑
k=1

Uk + (nt− [nt])U[nt]+1

 . (1.3)

The proof of the following result may be found in [1].

Theorem 1.2.2 The sequence of continuous stochastic processes (Xn)n∈N∗ con-
verges in distribution in the space C = C([0, 1],R) towards the Brownian motion:
∀f ∈ Cb(C,R), E[f(Xn)] → E[f(B)].

Taking Ui such that P (Ui = 1) = P (Ui = −1) = 1
2

and n = 10000 we obtain the
following simulation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
!140

!120

!100

!80

!60

!40

!20

0

20
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1.3 Properties

This part presents elementary but important results concerning the B.M. For
more details we refer to ([15]). Here, we consider that (Bt)t≥0 is a B.M R+.

1.3.1 Martingale property

Proposition 1.3.1 The stochastic processes (Bt), ((Bt)
2−t) and (eθBt−θ2 t

2 ) (θ ∈
R) are (FB

t )
t∈R+

martingales.

The following proposition is due to Paul Lévy.

Proposition 1.3.2 Let (Xt)t≥0 be a continuous martingale (with respect to the
filtration (FX

t )t≥0) starting from 0. Then X is a B.M if and only if one of the
two following conditions is fulfilled:

a) The process t→ (Xt)
2 − t is a martingale.

b)The process t→ eθXt−θ2 t
2 is a martingale for all θ ∈ R.

Proof: We only prove that a) implies that Xt is a B.M. (the implication “b)
⇒ Xt is a B.M” is left to the reader and based on the Itô formula [see chap.2]).
For t > s, we have ∀θ ∈ R,

E[eiθ(Xt−Xs)|FX
s ] = eθ

2 t−s
2

and taking the expectation

E[eiθ(Xt−Xs)] = eθ
2 t−s

2 .

This implies that Xt −Xs⊥FX
s because if Y is FX

s measurable, ∀u ∈ R

E[eiθ(Xt−Xs)+iuY ] = E[E[eiθ(Xt−Xs)+iuY |FX
s ]] = E[eiuY ]eθ

2 t−s
2 = E[eiuY ]E[eiθ(Xt−Xs)]

and that Xt −Xs follows a N (0, t− s).2

1.3.2 Transformations

Proposition 1.3.3 We put B
(s)
t = Bt+s − Bs, for fixed s, Yt = cB t

c2
, c > 0,

Zt = tB 1
t
, t > 0, Z0 = 0. Then, the stochastic processes −Bt, B

(s)
t , Yt and Zt are

standard Brownian motions.
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The fact that Yt is a B.M is known as the “scaling” property or the “self-
similarity’ ’: No matter what scale you examine Brownian motion on, it looks
just the same.

Proof of the proposition: For −Bt, B
(s)
t and Yt the proof is obvious. As

far as Zt is concerned, it is easy to prove that I Zt is a centered Gaussian process
with covariance function Γ(s, t) = inf(s, t). It remains to show the continuity
(the continuity at 0). This result is not easy ([14]) and we restrict ourselves to
Bn

n
→
n→∞

0. Since

Bn

n
=

(Bn −Bn−1) + ...+ (B1 −B0)

n

where the (Bi+1 −Bi)
′s are a n−sample of the standard normal distribution, we

can conclude using the S.L.L.N.2

1.3.3 Regularity of the paths

Proposition 1.3.4 Let (Bt) be a Brownian motion. Then P -a.s,

a) lim supt→+∞
Bt√
t
= lim supt→0+

Bt√
t
= +∞

b) lim inft→+∞
Bt√
t
= lim inft→0+

Bt√
t
= −∞

Proof: For a) consider the random variable

R = lim supt→+∞
Bt√
t

= lim supt→+∞
Bt −Bs√

t
(∀s ≥ 0).

By the independence of the Brownian increments R⊥σ(Bu, u ≤ s) for all s ≥ 0
thus R⊥σ(Bu, u ≥ 0). Hence R⊥R and R is a constant (finite or infinite).
Suppose that R is finite, thus (remind the definition of lim sup), P (Bt√

t
≥ R+1) →

0 when t → +∞. But P (Bt√
t
≥ R + 1) = P (B1 ≥ R + 1) > 0 the result follows.

For the second part of the equality the reasoning is the same.

The point b) is a direct consequence of both a) and the symmetry of the B.M.2

Corollary 1.3.1 i) ∀c ∈ R,

P ({∃ an infinite number of t0 ∈ [0, T ] such that Bt0 = c}) = 1.

ii) P -a.s, the Brownian sample path (Bt) is nowhere differentiable from the
right (resp. nowhere differentiable from the left).
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Proof: i) is a direct consequence of both the continuity of sample paths and
the preceding proposition.

ii)P -a.s, Bt in not differentiable at 0 from the right because lim supt→0+
Bt−B0√

t
=

+∞ . Considering (with the notations of proposition 1.3.3) the transformations
Bs
t and Zt, we show that P -a.s, the Brownian sample path (Bt) is nowhere dif-

ferentiable from the right (resp. nowhere differentiable from the left).2

Remark 1.3.1 The sample paths of the B.M are a celebrated example of contin-
uous functions nowhere differentiable. In general, such a function is not easy to
build (cf. Weierstrass function) without probability theory. Intuitively, (§1.1), the
nowhere differentiability implies that we are not able to measure the speed of a
pollen particle. This directly comes from the fact that we have neglected the mass
(i.e the inertia) in the preceding model.

Proposition 1.3.5

P ({ω; t→ Bt(w) is monotone in no interval }) = 1

Proof: We set F = {ω; there exists an interval where t→ Bt(w) is monotone}.
We have

F =
⋃

(s,t)∈Q2, 0≤s<t

{ω; t→ Bt(w) is monotone on [s, t]}.

For fixed 0 ≤ s < t in Q, we study for example

A = {ω; t→ Bt(w) is nondecreasing on [s, t]}.

But A =
⋂
n>0

⋂n−1
i=0 A

n
i where Ani = {ω;Bs+(t−s) i+1

n
− Bs+(t−s) i

n
≥ 0}. By inde-

pendence and stationarity,

P (
n−1⋂
i=0

Ani ) =
1

2n
.

Finally, ∀n > 0, P (A) ≤ 1
2n , thus P (A) and P (F ) are equal to zero.2

1.3.4 Variation and quadratic variation

The following proposition is fundamental.

Proposition 1.3.6 For t > 0, we set ∀n ∈ N, ∀j ∈ {0, ..., 2n}, tnj = tj
2n . Then,

Zn
t =

2n∑
j=1

|Btnj
−Btnj−1

|2 →
a.s and L2

t.
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Convergence de Zn(1)

Proof: We have E[Zn
t ] = t thus in order to prove the convergence in L2 we

only have to show that V ar(Zn
t ) → 0. But,

V ar(Zn
t ) =

2n∑
j=1

V ar(|Btnj
−Btnj−1

|2) =
2n∑
j=1

(
t

2n
)2 = 2−n+1t2,

the last equality coming from the fact that E[X4] = 3σ4 when X ∼ N (0, σ2).
Moreover

E

[
∞∑
n=1

|Zn
t − t|2

]
<∞.

Thus, using Tchebychev inequality and proposition 0.2.3 the a.s is also proved.
2

Corollary 1.3.2

2n∑
j=1

|Btnj
−Btnj−1

| →
a.s

+∞.

The Brownian paths are a.s of infinite variation on any interval.
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Proof: Suppose that P (limn→∞
2n∑
j=1

|Btnj
−Btnj−1

| <∞) > 0. In this case

t = limn→∞

2n∑
j=1

|Btnj
−Btnj−1

|2 ≤ limn→∞ max
1≤j≤2n

|Btnj
−Btnj−1

| limn→∞

2n∑
j=1

|Btnj
−Btnj−1

|.

The brownian paths being continuous on [0, 1] they are uniformly continuous,
thus

limn→∞ max
1≤j≤2n

|Btnj
−Btnj−1

| = 0 P − a.s.

From P (limn→∞
2n∑
j=1

|Btnj
− Btnj−1

| < ∞) > 0, we obtain a contradiction because

t > 0.2

1.3.5 Markov property

The following proposition ensures that the B.M is a Markov process i.e a process
such that the future states, given the present state and all past states, depends
only upon the present state and not on any past states.

Proposition 1.3.7 For any f : R → R measurable and bounded, for s < t,

E[f(Bt)|FB
s ] = E[f(Bt)|Bs] =

1√
2π(t− s)

∫
R
f(x)e−

(y−Bs)2

2(t−s) dy.

Proof: Since f(Bt) = f(Bt − Bs + Bs), where Bt − Bs⊥Bs and Bt − Bs ∼
N (0, t− s), the result follows from proposition 0.4.3.2

1.3.6 Geometric Brownian motion

Definition 1.3.1 For (b, σ) ∈ R2, the stochastic process

Xt = X0e
(b− 1

2
σ2)t+σBt

is called a geometric Brownian motion.

This process is “log-normal”: for X0 = x > 0,

ln(Xt) = (b− 1

2
σ2)t+ σBt + ln(x)

has a normal distribution.

Remark 1.3.2 X being a function of the B.M, it is easy to simulate.

The following simulation is done for b = 0, σ = 1, X0 = 1 and t ∈ [0, 1] (B.M
has been simulated using the Donsker method with n = 10000). Remark that
this process is always nonnegative.
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Exercise 1.3.1 a) Show that Xte
−bt is a martingale.

b) Show that E[Xt|X0] = X0e
bt and V ar(Xt|X0) = X2

0e
2bt(eσ

2t − 1).
c) For f ∈ Cb(R,R)and t > s show that

E[f(Xt)|FB
s ] =

∫ +∞

−∞
f(Xse

(b− 1
2
σ2)(t−s+σy

√
t−s))

1√
2π
e−

y2

2 dy.

(the geometric Brownian motion is a Markov process)

1.3.7 Wiener Integral

In this part we present a first elementary approach of the stochastic integral
(i.e an integral with respect to the B.M). We restrict ourselves to determinist
integrands (or special stochastic ones).

Reminder on integration theory

We refer the reader to [14] for more details on this subject.

Let g : [0, 1] → R be a continuous nondecreasing function (actually continuous
from the right is sufficient...) such that g(0) = 0. A classical result ensures the
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existence of a bounded measurem on ([0, 1],B([0, 1])) such that g(t) = m([0, t]) (if
g is nonnegative, the measure m is nonnegative and g the associated distribution
function). Now, it is easy to define the integral with respect to g putting ∀f ∈
L1(m), ∫ t

0

f(s)dg(s) =

∫
1[0,t]fdm.

This construction may be extended to less regular functions:

Definition 1.3.2 A function g [0, 1] → R+ is said to be of bounded variations if

sup
n∑
j=1

|f(tj)− f(tj−1)| <∞,

where the supremum is over partitions t0 = 0 ≤ t1 ≤ ..... ≤ tn = 1 of the interval
[0, 1].

Remark 1.3.3 If g is differentiable, g has bounded variations and in this case∫ t
0
f(s)dg(s) =

∫ t
0
f(s)g′(s)ds.

Proposition 1.3.8 When g has bounded variations, g(0) = 0 and g is continu-
ous, there exist two continuous nondecreasing functions g1 and g2 with g1 = g2 = 0
such that g = g1−g2. Thus the integral with respect to g is built from the integrals
with respect to g1 and g2.

According to corollary 1.3.2, we can see that for P almost all ω, the Brownian
sample paths are of infinite variations. It is not possible to build the stochastic
integral ω by ω.

Nevertheless we will adopt another point of view.

Construction of the Wiener integral

A method is to generalize the construction of the B.M by randomization of an
Hilbert space.

Let (gn)n∈N be i.i.d standard Gaussian random variables. We consider the
Hilbert space H = L2([0, 1], dx) and (χn)n∈N an associated orthonormal basis.
We set, ∀f ∈ H,

I(f)t =
∞∑
n=0

∫ t

0

f(s)χn(s)ds gn (1.4)
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(the serie being convergent in L2). Since Bt =
∞∑
n=0

∫ t
0
χn(s)ds gn, I(f)t will be

denoted by
∫ t

0
f(s)dBs. From exercise 0.2.2,

∫ t
0
f(s)dBs is centered Gaussian ran-

dom variable with variance
∫ t

0
f 2(s)ds. The continuity of the process (

∫ t
0
f(s)dBs)

can be prove directly by technical arguments or simply using theorem 1.2.1.

The proof of the following is left to the reader as an exercise.

Proposition 1.3.9 Properties of the Wiener integral

a) f ∈ H →
∫ t

0
f(s)dBs is linear.

b) (
∫ t

0
f(s)dBs)t∈[0,1] is a continuous and centered Gaussian process with co-

variance function Γ(s, t) =
∫ inf(s,t)

0
f 2(u)du.

c) (
∫ t

0
f(s)dBs)t∈[0,1] is adapted with respect to (FB

t )t∈[0,1] with independent in-
crements (but no stationarity).

d) When (f, g) ∈ H2, E
[∫ t

0
f(s)dBs

∫ u
0
g(s)dBs

]
=
∫ inf(t,u)

0
f(s)g(s)ds.

e)
(∫ t

0
f(s)dBs

)
t∈[0,1]

and
(
(
∫ t

0
f(s)dBs)

2 −
∫ t

0
f 2(s)ds

)
t∈[0,1]

are (FB
t )t∈[0,1] mar-

tingales.

f) (
∫ t

0
f(s)dBs)t∈[0,1] fulfills the Markov property.

When f is regular, the Wiener integral is actually defined ω by ω.

Proposition 1.3.10 When f ∈ C1([0, 1],R), then, ∀1 ≥ t ≥ 0,∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

f ′(s)Bsds.

Proof: We use (1.4) and the following equality∫ t

0

f(s)χn(s)ds = −
∫ t

0

(∫ t

s

f ′(u)du

)
χn(s)ds+ f(t)

∫ t

0

χn(s)ds.

2

Remark 1.3.4 This neat construction of the Wiener integral has a principal
defect: In fact, we can’t see cleary what are the essential properties of the Browian
motion that make it possible. We will see in the sequel that the orthogonality of
the Brownian increments is the key stone of such a construction and will allow
us to extend this procedure to general integrands.
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Exercise 1.3.2 A stochastic version of Fubini theorem
Let f : [0, 1]2 → R be a continuous mapping, the aim of the exercise is to prove
the following formulale∫ 1

0

∫ 1

0

f(s, t)dBs dt =

∫ 1

0

∫ 1

0

f(s, t)dt dBs.

a) Show that the integrals mentioned above are well defined.
b) Show that∫ 1

0

(
N∑
n=0

∫ 1

0

f(s, t)χn(s)ds gn

)
dt =

N∑
n=0

∫ 1

0

(∫ 1

0

f(s, t)dt

)
χn(s)ds gn.

Conclude (letting n goes to infinity).

Integrands of the form f(Bt)

The following proposition gives a definition of the stochastic integral for partic-
ular stochastic integrands. This approach is the stochastic counterpart to the
construction of the Lebesgue integral by Riemann sums.

Proposition 1.3.11 Let f : R → R be differentiable with bounded derivative.Then,
the serie

Zn =
n−1∑
i=0

f(B ti
n
)(B t(i+1)

n

−B ti
n
) (1.5)

converges in L2 and we denote by
∫ t

0
f(Bs)dBs its limit (in general, this limit

doesn’t follow a normal distribution).

Proof: The proof will be given in the sequel.2

Remark 1.3.5 When f is regular, the Riemann theorem ensures that
n−1∑
i=0

f(xin)(
t(i+1)
n
−

ti
n
) converges toward

∫ t
0
f(s)ds if xin ∈ [ ti

n
, t(i+1)

n
]. Thus, we have the choice of the

position of xin in the intervall [ ti
n
, t(i+1)

n
]. As far as the stochastic integral defined in

the preceding proposition is concerned, this property is not fulfilled anymore. The
choice of f(B ti

n
) is not innocent (in particular this random variable is indepen-

dent of (B t(i+1)
n

−B ti
n
)). Other choices imply other integrals. For example, taking

f

(
B t(i+1)

n

+B ti
n

2

)
we obtain the so-called Stratonovitch integral. When f = Id the

Stratonovitch integral (that is the limit of
n−1∑
i=0

1
2
(B t(i+1)

n

+ B ti
n
)(B t(i+1)

n

− B ti
n
)) is

equal to
B2

t

2
. According to the example mentionned below, the limit is different

from
∫ t

0
BsdBs.
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Comments

Let us consider a stochastic process (Gt) with sample paths of class C1 and
F : R → R a function of class C1. The classical rules of differential calculus
imply that

F (Gt) = F (G0) +

∫ t

0

F ′(Gs)G
′
sds.

Moreover, this result may be easily extended to continuous processes of bounded
variations.

We know that the Brownian motion has infinite variations (corollary 1.3.2)
thus the above formula is not valid as we can see in the following example.

Example 1.3.1 We want to compute
∫ t

0
BsdBs that is the limit in L2 of

n−1∑
i=0

B ti
n
(B t(i+1)

n

−

B ti
n
). But

2
n−1∑
i=0

B ti
n
(B t(i+1)

n

−B ti
n
) =

n−1∑
i=0

(B2
t(i+1)

n

−B2
ti
n
)−

n−1∑
i=0

(B t(i+1)
n

−B ti
n
)2

so

2
n−1∑
i=0

B ti
n
(B t(i+1)

n

−B ti
n
) = B2

t −
n−1∑
i=0

(B t(i+1)
n

−B ti
n
)2.

From proposition 1.3.6, the last term converges toward t in L2, thus

2

∫ t

0

BsdBs = B2
t − t.

1.3.8 Itô formula for B.M

Proposition 1.3.12 Consider f ∈ C2(R,R) with bounded second derivative.
Then, ∀t ∈ [0, 1],

f(Bt) = f(B0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds P − as.

Often, we will use the following differential notation

df(Bs) = f ′(Bs)dBs +
1

2
f ′′(Bs)ds.

Proof: According to the definition mentioned in proposition 1.3.11,∫ t

0

f ′(Bs)dBs = lim
L2

Zn = lim
L2

n−1∑
i=0

f ′(B ti
n
)(B t(i+1)

n

−B ti
n
).
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Moreover,

f(Bt)− f(B0) =
n−1∑
i=0

(f(B t(i+1)
n

)− f(B ti
n
))

and, from the Riemann sums theorem,∫ t

0

f ′′(Bs)ds = lim
as and L2

n−1∑
i=0

f ′′(B ti
n
)(
t(i+ 1)

n
− ti

n
). (1.6)

Using a Taylor approximation of order 2 and the continuity of the trajectories,

f(Bt)− f(B0) =
n−1∑
i=0

(f(B t(i+1)
n

)− f(B ti
n
))

with

f(B t(i+1)
n

)− f(B ti
n
) = f ′(B ti

n
)(B t(i+1)

n

−B ti
n
) +

1

2
f ′′(Bαi

)(B t(i+1)
n

−B ti
n
)2

where αi is a random variable with values in ] ti
n
, t(i+1)

n
[.

Now, it remains to show that

lim
L1

n−1∑
i=0

f ′′(Bαi
)(B t(i+1)

n

−B ti
n
)2 =

∫ t

0

f ′′(Bs)ds

in order to conclude using the unicity of the limits in L1 (remind that the con-
vergence in L2 implies the convergence in L1). This is proved in two steps:

On the first hand, using Schwartz’s inequality,

E

[∣∣∣∣∣
n−1∑
i=0

(
f ′′(Bαi

)− f ′′(B ti
n
)
)

(B t(i+1)
n

−B ti
n
)2

∣∣∣∣∣
]
≤ UnVn

with

Un = E

[
supi

∣∣∣f ′′(Bαi
)− f ′′(B ti

n
)
∣∣∣2] 1

2

and

Vn = E

∣∣∣∣∣
n−1∑
i=0

(B t(i+1)
n

−B ti
n
)2

∣∣∣∣∣
2
 1

2

.

From proposition 1.3.6, Vn → t. Moreover, Un → 0 by dominated convergence
because the function s→ f ′′(Bs) is almost surely uniformely continuous on [0, 1]
and bounded.
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On the other hand, we put

Wn = E

∣∣∣∣∣
n−1∑
i=0

f ′′(B ti
n
)

((
B t(i+1)

n

−B ti
n

)2

−
(
t(i+ 1)

n
− ti

n

))∣∣∣∣∣
2


and using the properties of the Brownian increments we obtain

Wn =
n−1∑
i=0

E

[∣∣∣∣f ′′(B ti
n
)

((
B t(i+1)

n

−B ti
n

)2

−
(
t(i+ 1)

n
− ti

n

))∣∣∣∣2
]
.

Thus

Wn ≤ ‖f ′′‖2
∞

n−1∑
i=0

V ar((B t(i+1)
n

−B ti
n
)2) = 2‖f ′′‖2

∞
t2

n
→ 0.

According to (1.6), the result follows.2

Exercise 1.3.3 (difficult...) Let f ∈ C2(R) such that

E

[∫ T

0

(f ′(Bs))
2
ds

]
< +∞. (∗)

Show that ∀t ∈ [0, T ],

f(Bt) = f(B0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds P − as.

This condition is less restrictive than the preceding one and allow us to apply
Itô formula taking for f the exponential mapping.

We can see on the following graph the necessity of a specific differential calculus
for the Brownian motion. We have represented in black a trajectory B2

t has been
represented (simulated using Donsker’s approximation), in green a trajectory of
2
∫ t

0
BsdBs (simulated using the definition of proposition 1.3.11) and in red a

trajectory of 2
∫ t

0
BsdBs + t.
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1.3.9 Applications of the Wiener integral

The Ornstein-Uhlenbeck process

At the beginning of this chapter, we have introduced the B.M to modelize the
motion (due to thermal agitation) of small pollen particles floating in water. We
have also seen that this model neglect the mass of the particle (i.e the inertia)
implying that the trajectories are nowhere differentiable. The following model,
proposed by Langevin, is more realistic ([10]).

Consider two forces exerted on a particle of mass m and velocity V (t):
a) a viscous force which is proportional to the particle velocity, f = −kV

(Stokes’ law) where k is a nonnegative constant linked to the radius of the particle,
b) a complementary force η representing the effect of a continuous series of

collisions with the atoms of the underlying fluid and described by Langevin: “
elle est indifféremment positive et négative, et sa grandeur est telle qu’elle main-
tient l’agitation de la particule que, sans elle, la résistance visqueuse finirait par
arrêter ” .

According to the Newton’s second law,

mdV (t) = −kV (t)dt+ η(t)dt. (1.7)
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The term η(t)dt represents the variation of the movement quantity dM(t) be-
tween t and t+ dt. Suppose that

a) dM(t) = M(t+ dt)−M(t) is independent of σ(Ms; s ≤ t).
b) the distribution of dM(t) doesn’t depend on t.
c) t→M(t) is continuous
d) (cf citation) E[M(t)] = 0.

Thus we can put M(t) = σBt and equation (1.7) becomes

mdV (t) = −kV (t)dt+ σdBt. (1.8)

We have the following definition

Definition 1.3.3 The Ornstein-Uhlenbeck process is the solution of the following
stochastic differential equation

Xt = X0 − a

∫ t

0

Xsds+ σBt (1.9)

where (a, σ) ∈ R2 and X0 are random variables independent of the B.M.

Proposition 1.3.13 The equation (1.9) has a unique solution given by the fol-
lowing continuous stochastic process:

Xt = e−ta
(
X0 + σ

∫ t

0

easdBs

)
. (1.10)

The following graph is a simulation of a trajectory of Xt with a = σ = 1 and
X0 = 0.
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Proof of proposition 1.3.13: According to proposition 1.3.10,

Xt = e−ta
(
X0 + σeatBt − σa

∫ t

0

easBsds

)
.

Using a stochastic version of Fubini theorem (exercise 1.3.1) we obtain

a

∫ t

0

Xsds = aX0

∫ t

0

e−asds+ aσ

∫ t

0

Bsds− a2σ

∫ t

0

e−as
(∫ s

0

eauBudu

)
ds.

Obvious computations ensure that

a

∫ t

0

Xsds = X0 −Xt + σBt,

the existence is proved.
For the unicity, if X1 and X2 are solutions of (1.9), then the process Z =

X1 −X2 satisfies

Zt = −a
∫ t

0

Zsds.

We may conclude using the following lemma:

Lemma 1.3.1 (Gronwall) Let T ∈ R+, K ∈ R+, φ : R+ → R+, ψ : R+ → R+

be such that ∀t ∈ [0, T ]
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φ(t) ≤ K +

∫ t

0

φ(s)ψ(s)ds <∞

and ∫ T

0

ψ(s)ds <∞.

Then,

φ(t) ≤ Ke
R t
0 ψ(s)ds.

2

The following graph represents the flow of the O.U process i.e the application
x0 ∈ [0, 1] → (Xx0

t (ω))t∈[0,1] where ω is fixed and Xx0 is the O.U process with
initial condition x0 ∈ [0, 1].
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When the initial condition has a normal distribution, we have the following
result easily derived from proposition 1.3.9.

Proposition 1.3.14 Suppose that X0 ∼ N (m,σ2
0) is independent of the B.M.

Then (Xt) is a Gaussian process with mean e

E[Xt] = me−at

and covariance function

cov(Xs, Xt) = e−a(t+s)
(
σ0 +

σ2

2a

(
e2a inf(s,t) − 1

))
.
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Vasicek process

The vasicek process is a slight variant of the OU process with an additional drift.
In Finance, it is used as a mathematical “one factor model” describing the evo-
lution of interest rates (cf. [11]). Here the aim is not to introduce the financial
theory but to familiarize the reader with underlying computations.

Let Yt be the stochastic process fulfilling

dYt = a(b− Yt)dt+ σdBt.

We can remark easily that Xt = Yt − b fulfills equation (1.9) Thus,

Yt = e−ta (Y0 − b) + b+ σ

∫ t

0

e−(at−s)dBs.

We have the same result as in proposition 1.3.14: if Y0 ∼ N (m,σ2
0) is independent

of the B.M, Y is a Gaussian process with mean

E[Xt] = me−at + b(1− e−at)

and covariance function

cov(Ys, Yt) = e−a(t+s)
(
σ0 +

σ2

2a

(
e2a inf(s,t) − 1

))
.

Exercise 1.3.4 Price of a zero-coupon

We want to compute ∀0 ≤ t ≤ T ,

P (t, T ) = E
[
e

R T
t Yudu|FB

t

]
.

Suppose that Y0 ∼ N (m,σ2
0) is independent of the B.M.

a) Using exercise 1.3.1, show that

Zt :=

∫ t

0

Yudu =
1

a

(
b(at− 1− e−at) + Y0(1− e−at) + σ

∫ t

0

(1− e−a(t−u))dBu

)
.

b) Using proposition 0.4.3, compute E[eiu(Zt−Zs)] for 0 ≤ s ≤ t ≤ T and u ∈ R.

c) Deduce from the preceding questions that the conditional distribution of Zt−
Zs given FB

t is gaussian with mean

M(s, t) = b(t− s) + a−1(Ys − b)(1− e−a(t−s))
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and variance

V (s, t) =
σ2

0

a2
(1− e−a(t−s))2 +

σ2

a2

(
(t− s) +

(1− e−2a(t−s))

2a
− 2(1− e−a(t−s))

a

)
.

d) Show that

P (t, T ) = e−M(t,T )+ 1
2
V (t,T ).
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à la finance, Second edition, Ellipses, Paris, 1997.

59



60 BIBLIOGRAPHY
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Chapter 2

Stochastic integral, Itô processes.

In this chapter (Bt)t∈[0,T ] will be a standard brownian motion defined on a prob-
ability space (Ω,A, P ). Moreover this probability space is equipped with the
Brownian filtration (FB

t )t∈[0,T ].

Now we want to extend the construction of Wiener integral in order to be
able to integrate regular stochastic processes. The remarkable properties of the
Brownian motion will lead to a simple and coherent construction on E([0, T ]×Ω)
and to an extension to integrand in L2

prog(Ω×[0, T ]) using an argument of isometry.
The price to be paid for this simplicity will be the capacity to only integrate
adapted processes but it will be enough for elementary financial issues.

2.1 The stochastic integral on E([0, T ]× Ω)

Consider

Xt =
n−1∑
i=1

Fti1[ti,ti+1[(t) (2.1)

in E([0, T ]× Ω) (one has 0 ≤ t1 ≤ ... ≤ tn ≤ T and Fti ∈ L2(Fti)).

2.1.1 Definition

Definition 2.1.1 In the case of an elementary integrand the stochastic integral
is given by ∫ T

0

XsdBs =
n−1∑
i=1

Fti(Bti+1
−Bti).

Remark 2.1.1 For 0 ≤ t ≤ T one defines naturally∫ t

0

XsdBs =

∫ T

0

Xs1[0,t](s)dBs =
n−1∑
i=1

Fti(B(ti+1∧t) −B(ti∧t)). (2.2)

61
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Of course, when X is a step function ( i.e Fti is constant) this definition coincides
with the Wiener one (cf. (1.4)). Nevertheless, it is important to notice that, in
general, the stochastic process

∫ t
0
XsdBs is no more Gaussian.

2.1.2 Properties of the Itô integral of an elementary pro-
cess

Proposition 2.1.1 On E([0, T ]× Ω) the stochastic integral fulfills the following
properties:

a) X 7→
∫ t

0
XsdBs is linear.

b) The process (
∫ t

0
XsdBs)t∈[0,T ] is continuous.

c) (
∫ t

0
XsdBs)t∈[0,T ] is an adapted process with respect to (FB

t )t∈[0,T ].

d) E
[∫ t

0
XsdBs

]
= 0 and V ar

(∫ t
0
XsdBs

)
= E

[∫ t
0
X2
sds
]
.

e) For 0 ≤ s ≤ t ≤ T ,

E

[∫ t

s

XudBu|FB
s

]
= 0 and E

[(∫ t

s

XudBu

)2

|FB
s

]
= E

[∫ t

s

X2
udu|FB

s

]
.

(2.3)
f) (
∫ t

0
XsdBs)t∈[0,T ] is a continuous and square integrable martingale with re-

spect to (FB
t )t∈[0,T ] moreover

E

[
sup

0≤t≤T
|
∫ t

0

XsdBs|2
]
≤ 4E

[∫ T

0

X2
udu

]
. (2.4)

Proof of the proposition: a) is obvious, b) and c) directly come from(2.2)
and d) from e) (taking s = 0). So we have to show e): Without loss of generality
we can assume that (adding two points to the subdivision) s = tj and t = tk
(k ≥ j). Thus,

E
[∫ t

0
XudBu|FB

s

]
= E

[
k−1∑
i=1

Fti(Bti+1
−Bti)|FB

tj

]
=

j−1∑
i=1

E
[
Fti(Bti+1

−Bti)|FB
tj

]
+

k−1∑
i=j

E
[
Fti(Bti+1

−Bti)|FB
tj

]
=

j−1∑
i=1

Fti(Bti+1
−Bti) +

k−1∑
i=j

E
[
FtiE

[
(Bti+1

−Bti)|FB
ti

]
|FB

tj

]
=

∫ s
0
XudBu + 0.
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For the second point, the calculus is performed in the same way:

E

[(∫ t
s
XudBu

)2

|FB
s

]
= E

(k−1∑
i=j

Fti(Bti+1
−Bti)

)2

|FB
tj


=

k−1∑
i=j

E
[
F 2
ti
(Bti+1

−Bti)
2|FB

tj

]
+ 2

∑
j≤i<l≤k−1

E
[
FtlFti(Bti+1

−Bti)(Btl+1
−Btl)|FB

tj

]
.

Using for the first sum that E[.|FB
tj

] = E[E[.|FB
ti

]|FB
tj

] and for the second one

that E[.|FB
tj

] = E[E[.|FB
tl

]|FB
tj

], one has

E

[(∫ t
s
XudBu

)2

|FB
s

]
=

k−1∑
i=j

E
[
F 2
ti
(ti+1 − ti)|FB

tj

]
+ 0

= E
[∫ t

s
X2
udu|FB

s

]
.

The point f) is a consequence of e) and of theorem 0.5.3.2

Exercise 2.1.1 a) For X and Y in E([0, T ]× Ω) and for v, t ≥ s show that

E

[(∫ t

s

XudBu

)(∫ v

s

YudBu

)
|FB

s

]
= E

[∫ t∧v

s

XuYudu|FB
s

]
.

b) show that
(∫ t

0
XudBu

)2

−
∫ t

0
X2
udu is a (FB

t )t∈[0,T ] martingale.

Remark 2.1.2 The property d) from which we deduce

V ar

(∫ T

0

XsdBs

)
= E

[(∫ T

0

XudBu

)2
]

= E

[∫ T

0

X2
sds

]
(2.5)

is fundamental. It implies that the function X 7→
∫ T

0
XsdBs is an isometry from

E([0, T ] × Ω) into the space of continuous and square integrable martingales on
[0, T ], (from now on, this space will be denoted by M2([0, T ])).

2.2 Extension to L2
prog(Ω× [0, T ])

By a standard method (extension of uniformly continuous functions with values
in a complete space) it is possible to extend the integral defined above for inte-
grands in L2

prog(Ω× [0, T ]).

Remind that theorem 0.5.2 ensures the density of E([0, T ]×Ω) in L2
prog(Ω×

[0, T ]).
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Proposition 2.2.1 Let X ∈ L2
prog(Ω × [0, T ]). If Φn and Φ′

n are two sequences
of elements of E([0, T ]× Ω) that converge toward X in L2

prog(Ω× [0, T ]) then

lim

∫ .

0

Φn(., s)dBs =
M2([0,T ])

lim

∫ .

0

Φ′
n(., s)dBs.

Proof: One has to prove two things. First, if Φn converges in L2
prog(Ω× [0, T ])

we want to show the convergence
∫ .

0
Φn(., s)dBs in M2([0, T ]). Since M2([0, T ])

is complete (proposition 0.5.6), we only have to prove that
∫ .

0
Φn(., s)dBs is a

Cauchy sequence in M2([0, T ]). This fact comes from (2.5). Secondly, the fact
that the limit is independent of the approximating sequence may be shown easily
using again (2.5).2

Now we have the following unambiguous definition of the stochastic integral
for an integrand X ∈ L2

prog(Ω× [0, T ]).

Definition 2.2.1 If X ∈ L2
prog(Ω× [0, T ]) and if Φn is a sequence in E([0, T ]×Ω)

that converges toward X in L2
prog(Ω × [0, T ]), we denote (

∫ .
0
XsdBs) the limit of

(
∫ .

0
Φn(., s)dBs) in M2([0, T ])

Remark 2.2.1 We have globally defined the stochastic process (
∫ .

0
XsdBs) (in-

stead of t by t). This implies immediately that the limit is a continuous martin-
gale. Note that this integral is defined up to stochastic equivalence.

A good training is to show that proposition 2.1.1 remains valid in this setting.

Proposition 2.2.2 On L2
prog(Ω× [0, T ]) the stochastic integral fulfills the follow-

ing properties:

a) X 7→
∫ t

0
XsdBs is linear.

b) The process (
∫ t

0
XsdBs)t∈[0,T ] is continuous.

c) (
∫ t

0
XsdBs)t∈[0,T ] is an adapted process with respect to (FB

t )t∈[0,T ].

d) E
[∫ t

0
XsdBs

]
= 0 and V ar

(∫ t
0
XsdBs

)
= E

[∫ t
0
X2
sds
]
.

e) For 0 ≤ s ≤ t ≤ T ,

E

[∫ t

s

XudBu|FB
s

]
= 0 and E

[(∫ t

s

XudBu

)2

|FB
s

]
= E

[∫ t

s

X2
udu|FB

s

]
.

(2.6)
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f) (
∫ t

0
XsdBs)t∈[0,T ] is a continuous and square integrable martingale with re-

spect to (FB
t )t∈[0,T ] moreover

E

[
sup

0≤t≤T
|
∫ t

0

XsdBs|2
]
≤ 4E

[∫ T

0

X2
udu

]
. (2.7)

Remark 2.2.2 The stochastic integral coincides not only with the Wiener inte-
gral but also with the one define in proposition 1.3.11 ( or in exercise 1.3.3 but
it is more technical...). In Fact, in the framework of proposition 1.3.11, we only

have to show that the process Zn =
n−1∑
i=0

f(BTi
n

)1
]Ti

n
,
T (i+1)

n
]
converges toward f(B)

in L2
prog(Ω× [0, T ]). But

E
[∫ T

0
(f(Bs)− Zn(s))

2 ds
] 1

2
= E

[
n−1∑
i=0

∫ T (i+1)
n

Ti
n

(
f(Bs)− f(BTi

n
)
)2

ds

] 1
2

≤ ‖f ′‖∞
(
n−1∑
i=0

∫ T (i+1)
n

Ti
n

(s− Ti
n

)ds

) 1
2

≤ T‖f ′‖∞√
2n

.

Thus,

lim

∫ .

0

Zn(., s)dBs =
M2([0,T ])

lim
n−1∑
i=0

f(BTi
n

)(BT (i+1)
n

∧.−BTi
n
∧.) =

M2([0,T ])

∫ .

0

f(Bs)dBs.

2.3 Itô Process

Definition 2.3.1 An Itô process is a continuous and adapted process on [0, T ] of
the form

Xt = X0 +

∫ t

0

ψsds+

∫ t

0

φsdBs (2.8)

where φ and ψ belong to L2
prog(Ω × [0, T ]) and X0 ∈ L2(F0). We will adopt the

following differential notation

dXs = ψsds+ φsdBs.

Proposition 2.3.1 The decomposition (2.8) is unique up to stochastic equiva-
lence.

Proof: This directly derives from proposition 0.5.5.2
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Corollary 2.3.1 According to proposition 0.5.5, an Itô process is a martingale
if and only if the part in un ds (ψ) is equal to zero .

Definition 2.3.2 Naturally we can extend the notion of stochastic integral with
respect to an Itô process. If X is of the form (2.8), then, for θ ∈ L2

prog(Ω× [0, T ])

fulfilling θψ ∈ L2
prog(Ω × [0, T ]) and θφ ∈ L2

prog(Ω × [0, T ]) one defines
∫ t

0
θsdXs

by ∫ t

0

θsdXs =

∫ t

0

θsψsds+

∫ t

0

θsφsdBs. (2.9)

We have the following “change of variable” formula for Itô processes in the
spirit of proposition 1.3.12. It may be seen as the stochastic calculus counterpart
of the chain rule in ordinary calculus. The proof is left to the reader, the method
being the same as in the case of the Brownian motion.

Proposition 2.3.2 Let X be an Itô process of the form (2.8), if f ∈ C2(R,R)
with bounded derivatives, then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)φ
2
sds. (2.10)

Remark 2.3.1 In order to give sense to the preceding stochastic integrals we
have assumed that f has bounded derivatives. This condition is very restrictive
for applications. We will see in the next paragraph some possible extensions of the
preceding formula using an other extension of the stochastic integral. Nevertheless
(see exercise 1.3.3) the conditions f ′(X)ψ ∈ L2

prog(Ω×[0, T ]), f ′(X)φ ∈ L2
prog(Ω×

[0, T ]) and f ′′(Xs)φ
2 ∈ L2

prog(Ω × [0, T ]) ensures the validity of (2.10) without
assumptions on the derivatives of f .

The Itô formula may easily be extended to the case of time dependent func-
tions:

Proposition 2.3.3 Let X be an Itô process of the form (2.8), if f ∈ C(1,2)([0, T ]×
R,R) with bounded derivatives, then

f(t,Xt) = f(0, X0) +

∫ t

0

f ′x(s,Xs)dXs +
1

2

∫ t

0

f ′′xx(s,Xs)φ
2
sds+

∫ t

0

f ′t(s,Xs)ds.

(2.11)
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2.4 Extended Itô Calculus

In this lecture, the part concerning martingale theory is minimalist (in particular
we don’t deal with the notion of “stopping time”) but sufficient to introduce
stochastic finance and continuous time models.

The results stated in this section will be admitted and used hereafter when
the integrability conditions of proposition 2.3.3 won’t be fulfilled. We refer the
reader to [3] for the corresponding technical proofs which are not exactly in the
spirit of this introduction.

The following results are fundamental for the study of financial mod-
els (meditate them.....)

The assumption X ∈ L2
prog(Ω × [0, T ]) made in order to construct stochastic

integral is sometime too restrictive. Often it can be overcome.
Define the following sets

H2
loc(Ω× [0, T ]) =

{
(Xt)t∈[0,T ] prog meas;

∫ T

0

X2
sds <∞P − a.s

}
and

H1
loc(Ω× [0, T ]) =

{
(Xt)t∈[0,T ] prog meas;

∫ T

0

|Xs|ds <∞P − p.s

}
.

Obviously we have

L2
prog(Ω× [0, T ]) ⊂ H2

loc(Ω× [0, T ]) ⊂ H1
loc(Ω× [0, T ]).

Proposition 2.4.1 We can extend the stochastic integral to integrands in H2
loc(Ω×

[0, T ]). But, in this case, the stochastic process
∫ t

0
XsdBs is not in general a

martingale (e.g E[
∫ t

0
XsdBs] may be different from zero). Nevertheless, the

properties a), b) et c) on proposition 2.2.2 remain valid.

Remark 2.4.1 The lack of integrability for the integrand brings about a lack of
regularity for the stochastic integral. However,

∫ t
0
XsdBs is know in the literature

as a local martingale (it is not a martingale but not so far).

We define generalized Itô processes

Definition 2.4.1 A generalized Itô process is an adapted and continuous process
[0, T ] of the form

Xt = X0 +

∫ t

0

ψsds+

∫ t

0

φsdBs (2.12)
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where φ ∈ H2
loc(Ω × [0, T ]), ψ ∈ H1

loc(Ω × [0, T ]) and X0 is FB
0 measurable. We

will use the shorthand differential notation

dXs = ψsds+ φsdBs.

Proposition 2.4.2 The decomposition (2.12) is unique:

Xt = X0 +

∫ t

0

ψsds+

∫ t

0

φsdBs = X ′
0 +

∫ t

0

ψ′sds+

∫ t

0

φ′sdBs (2.13)

implies

X0 = X ′
0 P − a.s, ψ = ψ′ dx⊗ P − a.s, φ = φ′ dx⊗ P − a.s.

In this framework, corollary 2.3.1 remains valid:

Proposition 2.4.3 If (Xt)is a martingale of the form 2.12 then ψ = 0 dx⊗P −
a.s.

The assumptions in Itô Formula become more flexible:

Proposition 2.4.4 Let X be an Itô process of the form (2.12). If f ∈ C2(R,R),
then,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)φ
2
sds. (2.14)

where ∫ t

0

f ′(Xs)dXs =

∫ t

0

f ′(Xs)ψsds+

∫ t

0

f ′(Xs)φsdBs.

If f is a time dependent function we have

Proposition 2.4.5 Let X be an Itô process of the form (2.12). If f ∈ C(1,2)([0, T ]×
R,R), then,

f(t,Xt) = f(0, X0) +

∫ t

0

f ′x(s,Xs)dXs +
1

2

∫ t

0

f ′′xx(s,Xs)φ
2
sds+

∫ t

0

f ′t(s,Xs)ds.

(2.15)

Finally, when the function f is not defined on the whole real line but on an
open subset Θ of R (e.g log) we have the following version:
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Proposition 2.4.6 Let X be an Itô process of the form (2.12) such that ∀t ∈
[0, T ], Xt ∈ Θ P − a.s. If f ∈ C2(Θ,R), then,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)φ
2
sds. (2.16)

where ∫ t

0

f ′(Xs)dXs =

∫ t

0

f ′(Xs)ψsds+

∫ t

0

f ′(Xs)φsdBs.

Exercise 2.4.1 (Integration by parts formula)
Let X and Y be two Itô processes [0, T ] of the form

Xt = X0 +

∫ t

0

ψsds+

∫ t

0

φsdBs

and

Yt = Y0 +

∫ t

0

ψ′sds+

∫ t

0

φ′sdBs.

Show that

XtYt = X0Y0 +

∫ t

0

YsdXs +

∫ t

0

XsdYs +

∫ t

0

φsφ
′
sds. (2.17)

(Hint: We may apply Itô formula to (Xt + Yt)
2, X2

t and Y 2
t .)

2.5 Stochastic differential equations (SDE)

2.5.1 Geometric Brownian motion

Remind that (def 1.3.1) the geometric Brownian motion with drift b and volatility
σ2 ((b, σ) ∈ R2) is the continuous stochastic process (St)t∈[0,T ] defined by

St = x0e
(b− 1

2
σ2)t+σBt . (2.18)

Here we suppose that x0 > 0 in such a way that ∀t ∈ [0, T ], Xt > 0. Applying

the formula 2.15 with f(t, x) = x0e
(b− 1

2
σ2)t+σx and Xt = Bt =

∫ t
0
dBs, we obtain

∀t ∈ [0, T ]

St = f(t, Bt) = f(0, B0) +

∫ t

0

f ′t(s, Bs)ds+

∫ t

0

f ′x(s, Bs)dBs +
1

2

∫ t

0

f ′′x (s, Bs)ds

thus
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St = f(t, Bt) = x0 + (b− 1

2
σ2)

∫ t

0

Ssds+ σ

∫ t

0

SsdBs +
1

2
σ2

∫ t

0

Ssds.

Using the differential notation (St) fulfills

dSt = bStdt + σStdBt (2.19)

with initial condition S0 = x0.

This so-called equation is know in finance as the Black and Scholes equation.

Remark 2.5.1 According to proposition 1.3.1, when b = 0, the stochastic pro-
cess St is a martingale. In this case, this martingale is called an exponential
martingale.

Concerning equation 2.19, the following proposition ensures the uniqueness of
the solution.

Proposition 2.5.1 For (b, σ) ∈ R2, there exists a unique (in the sense of defi-
nition 0.5.4) Itô process (St) such that

dSt = bStdt+ σStdBt

(with S0 = x0). This process is given by 2.18.

Proof: Consider a process (Xt) fulfilling X0 = x0 and dXt = bXtdt+σXtdBt.
We put

Zt =
S0

St
= e(−b+

1
2
σ2)t−σBt = e(b

′− 1
2
σ′2)t+σ′Bt

where σ′ = −σ and b′ = −b+ σ2. Thus, using Itô formula,

Zt = 1 +

∫ t

0

Zs(b
′ds+ σ′dBs) = 1 +

∫ t

0

Zs((−b+ σ2)ds− σdBs).

From exercise 2.4.1, we deduce easily that d(XtZt) = 0. Thus, ∀t ∈ [0, T ],

Xt = St P − a.s.

Then the process Xt is a version of St. These processes being continuous they
are indistinguishable. 2
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2.5.2 General case

We refer to [6], [8] et [9] for more details on this topic.

Consider the following stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (2.20)

with initial condition (I.C) X0 = Z.

We first define the notion of solution.

Definition 2.5.1 Let b : R+ × R → R, σ : R+ × R → R and Z FB
0 measurable.

A solution to the equation 2.20 is a continuous and adapted process (Xt)t∈[0,T ]

such that:

a) ∀t ∈ [0, T ], the integrals
∫ t

0
b(s,Xs)ds are

∫ t
0
σ(s,Xs)dBs are well defined i.e

(σ(t,Xt))t∈[0,T ] ∈ H2
loc(Ω× [0, T ]) and (b(t,Xt))t∈[0,T ] ∈ H1

loc(Ω× [0, T ]).

b) (Xt)t∈[0,T ] fulfills 2.20.

Here we establish sufficient conditions (of Lipschitz type) on b and σ to obtain
an existence and uniqueness result equation 2.20. As in the case of ordinary
differential equations (O.D.E) there are not necessary (see [9]).

Theorem 2.5.1 Let b and σ two continuous functions fulfilling ∃K > 0 such that

a) |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|

b) |b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|).

When E[Z2] <∞, equation 2.20 has a unique solution (Xt)t∈[0,T ] (in the sense
of indistinguishability). Moreover,

E[ sup
0≤t≤T

|Xt|2] <∞.

Sketch of the proof: As usual when dealing with differential equations (or-
dinary or stochastic) the existence result use the fixed point theorem and the
uniqueness one Gronwall lemma.

Step 1: Work on the “good” space: S

We define the following complete space:
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S = {(Xt)t∈[0,T ]; (Xt)t∈[0,T ] adapted and continuous such that E[ sup
0≤t≤T

|Xt|2] <∞}

equipped with the norm

‖X‖S = E[ sup
0≤t≤T

|Xt|2]
1
2

Step 2: Apply Picard fixed point theorem for small T

Consider the function F associating to a process (Xt)t∈[0,T ] the process (F (X)t)t∈[0,T ]

defined by

F (X)t = Z +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs.

A) F is well defined

According to condition b), when (Xt)t∈[0,T ] ∈ S, the processes σ(t,Xt))t∈[0,T ]

and (b(t,Xt))t∈[0,T ] are in L2
prog(Ω× [0, T ]). (Note that the process

∫ t
0
σ(s,Xs)dBs

is in this case a square integrable martingale).

B) F (S) ⊂ S

Since (u+ v)2 ≤ 2(u2 + v2),

|F (X)t−F (0)t|2 ≤ 2( sup
0≤t≤T

|
∫ t

0

(b(s,Xs)−b(s, 0))ds|2+ sup
0≤t≤T

|
∫ t

0

(σ(s,Xs)−σ(s, 0))dBs|2)

and from a)

E[ sup
0≤t≤T

|
∫ t

0

(b(s,Xs)− b(s, 0))ds|2] ≤ K2T 2E[ sup
0≤t≤T

|Xt|2].

According to 2.4 and a)

E[ sup
0≤t≤T

|
∫ t

0

(σ(s,Xs)− σ(s, 0))dBs|2] ≤ 4K2TE[ sup
0≤t≤T

|Xt|2].

Thus
‖F (X).‖S ≤

√
2(K2T 2 + 4K2T )‖X.‖S + ‖F (0).‖S .

Furthermore, (a+ b+ c)2 ≤ 3(a2 + b2 + c2) implies

|F (0)t|2 ≤ 3(Z2 + sup
0≤t≤T

|
∫ t

0

b(s, 0)ds|2 + sup
0≤t≤T

|
∫ t

0

σ(s, 0)dBs|2)
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and making use of hypotheses b) and 2.4

‖F (0).‖S ≤ 3(E[Z2] +K2T 2 + 4K2T ) <∞.

The result follows because ‖F (X)‖S <∞ thus X ∈ S.

C) Performing the same kind of computations as in B),

‖F (X)− F (Y )‖S ≤
√

2(K2T 2 + 4K2T )‖X − Y ‖S ,

so F is Lipschitz with constant
√

2(K2T 2 + 4K2T ). If T is small enough it is
even a contraction!!!

D) For small T = T0, F has a unique fixed point in S, this fixed point is
clearly a solution of 2.20 on [0, T0]. Thus, the solution of 2.20 on [0, T0] is unique
if we restrict the space to S.

Step 3: Uniqueness of the solution on [0, T0]

This step is technical see for example [5] for a proof using the Gronwall lemma
and the stopping time theorem...

Step 4: From local solutions to global solutions

We only have to successively work on [0, T0], [T0, 2T0],.... 2

2.5.3 The Markov property of solutions

For (t, x) ∈ ([0, T ] × R), let (X t,x
s )s≥t be the solution of (2.20) such that Xt = x

thus

X t,x
s = x+

∫ s

t

b(u,X t,x
u )du+

∫ s

t

σ(u,X t,x
u )dBu.

The following results, giving without demonstrations, are very useful to com-
pute conditional expectations associated to solutions of S.D.E.

Proposition 2.5.2 In the framework of theorem 2.5.1, if s ≥ t,

X0,x
s = X t,X0,x

t
s P.a.s. (2.21)

Proposition 2.5.3 In the framework of theorem 2.5.1, the solution of (2.20) is
a Markov process: for all f : R → R measurable and bounded, if t ≥ s,

E[f(Xt)|FB
s ] = Φ(Xs) P.a.s. (2.22)
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where Φ(x) = E[f(Xs,x
t )]. Moreover, if the coefficients b and σ don’t depend on t

(the equation is said to be homogenous)

E[f(Xt)|FB
s ] = Ψ(Xs) P.a.s. (2.23)

where Ψ(x) = E[f(X0,x
t−s)].

2.5.4 Simulation of solutions of S.D.E (a first step)

Often, S.D.E don’t have explicit solutions (ndlr: closed form formula). Thus, it is
interesting to use in theses cases some approximation schemes. Here we present
the simplest method that is a scheme of order 1. These methods are directly
derived from the one’s used for O.D.E (see [1], [4] and [2]).

Stochastic Euler scheme

Here we suppose that (Xt)t∈[0,T ] is the solution of

dXt = b(Xt)dt+ σ(Xt)dBt

with (I.C) X0 = x.

Consider the subdivision of order N ∈ N∗ of the interval [0, T ] and put ∀i ∈
{0, ..., N}, tNi = iT

N
. Define the following iterative scheme: ∀i ∈ {1, ..., N},

XN(tNi ) = XN(tNi−1) + b(XN(tNi−1))
T

N
+ σ(XN(tNi−1))(BtNi

−BtNi−1
) (2.24)

with XN(0) = x. We denote by XN the polygonal interpolation of the points of
the form (tNi , X

N(tNi )). We have (see [2]) the following result:

Proposition 2.5.4 In the framework of theorem 2.5.2,

E[ sup
t∈[0,T ]

(XN
t −Xt)

2] ≤ K
T

N

where K doesn’t depend on T .

From a practical point of view, formula (2.24) is quiet simple. We only have

to generate a sample (gi) of a N (0, 1) and substitute
√

T
N
gi for BtNi

−BtNi−1
.
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Chapter 3

Two fundamental results

In this chapter (Bt)t∈[0,T ] is a standard B.M defined on a probability space
(Ω,A, P ). Moreover, this probability space is equipped with the natural brown-
ian filtration (FB

t )t∈[0,T ]. We denote by E the expectation under P .

3.1 Girsanov’s theorem

Reminder: We have already proved (exercise 0.6.1) the following result: If X is
a random variable that follows, under a probability P , a N (m,σ2) then, under
the probability Q (equivalent to P ) having the density

L = e−
mX
σ2 e+

m2

2σ2 , (3.1)

with respect to P , X follows a N (0, σ2).

Here the aim is to extend this result in a dynamical way at the very least in
the case of certain Gaussian processes (in particular for the Brownian motion).
First we are going to deal with an elementary example.

If m ∈ R, we consider the stochastic process (B̃t)t∈[0,T ] defined by

B̃t = Bt +mt. (3.2)

We can show easily that (B̃t)t∈[0,T ] is a Brownian motion under the probability P

if and only if m = 0. Now we want to find a probability Q which makes (B̃t)t∈[0,T ]

a standard Brownian motion under Q. Since B̃t is a N (mt, t), according to (3.1)
we define

Lt = e−mB̃te
m2t
2 = e−mBte−

m2t
2 . (3.3)

77
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Then, one has

a) for fixed t, B̃t is, under the probability Qt having the density Lt with
respect to P , a N (0, t),

b) the stochastic process (Lt)t∈[0,T ] is a martingale under P .

Finally we obtain the following proposition.

Proposition 3.1.1 If m ∈ R. Under the probability Q defined by

dQ

dP
= LT ,

(B̃t)t∈[0,T ] is a standard Brownian motion.

We need the following technical lemma.

Lemma 3.1.1 A stochastic process (Mt)t∈[0,T ] is martingale under Q if and only
if the process (LtMt)t∈[0,T ] is a martingale under P .

Proof of the lemma: Note first that

EQ[Z] = E[LsZ]

if Z is FB
s measurable and bounded. Moreover, if t ≥ s and if Y is FB

s measurable
and bounded,

EQ[MtY ] = E[LTMtY ] = E[E[LTMt|FB
s ]Y ] = E[E[E[LTMt|FB

t ]|FB
s ]Y ]

thus

EQ[MtY ] = E[E[LtMt|FB
s ]Y ] = E[

Ls
Ls
E[LtMt|FB

s ]Y ] = EQ[
1

Ls
E[LtMt|FB

s ]Y ].

So

EQ[Mt|FB
s ] =

1

Ls
E[LtMt|FB

s ].2

Proof of the proposition: First we show (exercise) that LtB̃t is a square inte-
grable continuous martingale under P so that L0B̃0 = 0. Then, from proposition

1.3.2, we only have to prove that, ∀θ ∈ R, the process eθB̃t− θ2t
2 is a Q martingale

i.e according to the technical lemma that Lte
θB̃t− θ2t

2 = e(m+θ)Bt− 1
2
(m+θ)2t is a P

martingale. The last point is classically known.2
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The stochastic process (Lt)t∈[0,T ] plays in this example a key role. It is called in
the literature an exponential martingale. More generally, if (θt)t∈[0,T ] ∈ H2

loc(Ω×
[0, T ]), one defines

Lt = e−
R t
0 θsdBs− 1

2

R t
0 θ

2
sds (3.4)

and using the Itô formula dLt = −LtθtdBt.

Exercise 3.1.1 1) Show that (Lt)t∈[0,T ] is a non-negative supermartingale.
2) Show that (Lt)t∈[0,T ] is a martingale if and only if E[LT ] = 1.

In this framework, we have the following generalization of the proposition 3.1.1.
(cf [1])

Theorem 3.1.1 (Girsanov) Let (θt)t∈[0,T ] ∈ H2
loc(Ω × [0, T ]) be such that the

stochastic process (Lt)t∈[0,T ] defined by

Lt = e−
R t
0 θsdBs− 1

2

R t
0 θ

2
sds (3.5)

is a martingale under P . Then, under the probability Q with density

dQ

dP
= e−

R T
0 θsdBs− 1

2

R T
0 θ2sds,

(B̃t)t∈[0,T ] where B̃t = Bt +
∫ t

0
θsds is a standard Brownian motion.

The following proposition (cf [1]) gives us an easy criteria to apply the preced-
ing theorem. In fact it gives a condition for (Ltθt)t∈[0,T ] to belong to L2

prog(Ω ×
[0, T ]). This condition is sufficient because dLt = −LtθtdBt.

Proposition 3.1.2 (Novikov) The process (Lt)t∈[0,T ] defined by (3.5) is a mar-
tingale if

E[e
1
2

R T
0 θ2sds] <∞.

3.2 Martingale representation theorem

We already know that if (θt)t∈[0,T ] ∈ L2
prog(Ω × [0, T ]) the stochastic integral

(
∫ t

0
θsdBs)t∈[0,T ] is a square integrable continuous martingale relative to the Brow-

nian filtration. In this part we are going to prove the converse: all continuous
and square integrable Brownian martingales have the preceding form.

Example 3.2.1 It is known that ((Bt)
2 − t)t∈[0,T ] and (eθBt−θ2 t

2 )t∈[0,T ] (θ ∈ R)
are (FB

t )
t∈[0,T ]

martingales. Moreover, we have (example 1.3.1)

B2
t − t = 2

∫ t

0

BsdBs
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and according to Itô formula,

eθBt−θ2 t
2 = θ

∫ t

0

eθBs−θ2 s
2dBs.

We need the following technical lemma:

Lemma 3.2.1 The vector space V consists of random variables of the form

e
R T
0 h(s)dBs− 1

2

R T
0 h(s)2ds (3.6)

where h ∈ L2([0, T ], dx) is dense in L2(Ω,FB
T , P ).

Proof: Let Y ∈ V⊥, one has to show that Y = 0. For (λ1, ..., λp) ∈ Rp and
0 ≤ t1 ≤ ... ≤ tp ≤ T , (3.6) implies

E[Y eλ1Bt1+...+λpBtp ] = 0.

Thus, the measure defined ∀A ∈ B(Rp) by

µ(A) = E[Y 1A(Bt1 , ..., Btp)]

is null because its Laplace transform is null. So ∀G ∈ σ(B1 , ..., Btp),

E[Y 1G] = 0.

Using the monotone class theorem, (see [1]), we have ∀G ∈ FB
T

E[Y 1G] = 0.

Thus, Y = 0.2

Theorem 3.2.1 ( Itô representation theorem) let F ∈ L2(Ω,FB
T , P ), then there

exists a unique (θt)t∈[0,T ] ∈ L2
prog(Ω× [0, T ]) so that

F = E[F ] +

∫ T

0

θsdBs. (3.7)

Proof: Step 1: F ∈ V

If F has the form (3.6) then E[F ] = 1 and the Itô formula ensures that

F = 1 +

∫ T

0

h(u) eR u
0 h(s)dBs− 1

2

R u
0 h(s)2ds︸ ︷︷ ︸

Lh
u

 dBu.
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Moreover (h(t)Lht )t∈[0,T ] ∈ L2
prog(Ω× [0, T ]) because

E

[∫ T

0

(h(u)Lhu)
2du

]
=

∫ T

0

e
R u
0 h2(t)dth2(u)dt ≤ e

R T
0 h2(t)dt

∫ T

0

h2(t)dt <∞

thus by isometry,

E

[(∫ T

0

h(u)LhudBu

)2
]

= E

[∫ T

0

(h(u)Lhu)
2du

]
.

So the property (3.7) is fulfilled by random variables of the form (3.6) and
even (by linearity) by linear combinations of such random variables.

Step 2: General case

If F ∈ L2(Ω,FB
T , P ), there exists (lemma 3.2.1) a sequence (Fn)n∈N of linear

combinations of random variables of the form (3.6) that converges toward F in
L2(Ω,FB

T , P ). According to the preceding step there exists a sequence (θn) ∈
L2
prog(Ω× [0, T ]) such that

Fn = E[Fn] +

∫ T

0

θns dBs.

Now, we naturally (and correctly) want to pass to the limit. Using the isometry
property of the Itô integral we can prove that

a) (θn)n∈N is a cauchy sequence in L2
prog(Ω× [0, T ]) thus (theorem 0.5.2) con-

verges toward θ ∈ L2
prog(Ω× [0, T ]).

b) F = lim
L2

Fn = lim
L2

(
E[Fn] +

∫ T
0
θns dBs

)
= E[F ] +

∫ T
0
θsdBs.

c) The representation is unique in L2
prog(Ω× [0, T ]).2

Theorem 3.2.2 (Martingale representation theorem) Let (Mt)t∈[0,T ] be a contin-
uous and square integrable martingale (with respect to the brownian filtration),
there exists a unique stochastic process (θt)t∈[0,T ] ∈ L2

prog(Ω× [0, T ]) such that

Mt = E[M0] +

∫ t

0

θsdBs. (3.8)

Proof: MT ∈ L2(Ω,FB
T , P ), thus there exists (θt)t∈[0,T ] ∈ L2

prog(Ω × [0, T ]) so
that

MT = E[MT ]︸ ︷︷ ︸
E[M0]

+

∫ T

0

θsdBs.
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Moreover, according to (2.6)

Mt = E[MT |FB
t ] = E[M0] + E[

∫ T

0

θsdBs|FB
t ] = E[M0] +

∫ t

0

θsdBs.2

Remark 3.2.1 The preceding proof is a theoretical result of existence. Neverthe-
less, using the methods of Malliavin calculus (see [2]), we can often find explicitly
the process (θt)t∈[0,T ].
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Chapter 4

Applications to finance (general
framework)

4.1 Introduction

4.1.1 Some historical aspects

Until the end of the sixties, the mathematical tools used concretely by finan-
cial practioners were (roughly speaking) elementary (actuarial calculus, etc...).
Considering the stochastic methods exposed in the preceding chapters (rather
complicated) it may be surprising to apply them to the modelling of real mar-
kets. A first question is to explain briefly this new direction and to highlight why
deep links between stochastic calculus and finance have been developed...

The main explanation is the recent explosion of derivatives markets (especially
options). Apparently, the first important example of such a market was the tulip
bulbs market creating in XVII century in Holland. Usually, a financial market
is an institution where the law of supply and demand takes place: peacefully
equalize the quantity of a good demanded by consumers and the quantity supplied
by producers throughout a fair price. In Holland a new type of market appeared:
In order to protect themselves against unpredictable climate variations, producers
of tulips developed financial contracts between two parties giving the right to fixe
the price of future transactions against a certain amount of money. Unfortunately,
this original experiment was very short. In fact, during a mild winter, the price of
bulbs suddenly decreased, the producers exercised their rights and buyers didn’t
be able to pay. This example is very famous, the term tulip mania (alternatively
tulipomania) is again used metaphorically to refer to any large economic bubble
or crash...

Question: How to fixe the price of such a financial contract (PRICING)
and how to use this amount of money to be able to partly overcome the risk due

85
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to randomness (HEDGING)?

The recent explosion of options markets, during the seventies in the USA
(Chicago Board of Options Exchange in 1973) and during the eighties in Europe
(Marché d’Options Négociables de Paris in 1987) may have several economical
explanations. Nevertheless, it cannot be denied that the main one is link to the
creation of new risk management tools directly deriving from important properties
of the stochastic integral. In 1997, Scholes and Merton (see [2] and [7]) obtained
their Nobel prize for this revolution (especially for works done in 1973) that
provoked huge theoretical and practical changes.

4.1.2 Stochastic integral?

Here, we consider an elementary framework in order to introduce the role of
stochastic integral. In particular we omit the problems of actualization.

Let us consider a time interval [0, T ] and an associated subdivision 0 = t1 <
...tn = T . We suppose that (in fact it is Bachelier hypothesis see [1]) the value (i.e
its price) of a financial product is given byBt at time t ∈ {t1, ..., tn}. We consider a
trader that adopts the following strategy: for f ∈ L2([0, T ], dx), ∀i ∈ {1, ..., n−1}

a) he buys f(ti) assets at time ti (the unit price is Bti)

b) he sells them at time ti+1 (the unit price is Bti+1
)

c) during the period [ti, ti+1] the profit is f(ti)(Bti+1
−Bti).

On [0, T ] the total profit is given by

n−1∑
i=1

f(ti)(Bti+1
−Bti).

If the trading is done in continuous time, this profit becomes∫ T

0

f(s)dBs.

Using the same reasoning, it is easy to extend the preceding result in a more
general setting: when the value of the stock is given by a regular Itô process
(St)t∈[0,T ] and when f is a non-anticipating random function (i.e a stochastic pro-
cess that is progressively measurable with respect to the Brownian filtration).
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Furthermore, let us consider a financial product whose price at time T (denoted
by P (T )) is of the form

P (T ) = k +

∫ T

0

f(t)dSt. (4.1)

If the financial market fulfills a natural hypothesis (No Arbitrage opportunity),
it can be shown that the price to buy this asset at t = 0 is none other than k. In
the same way, if the seller of such a product obtains k at time t = 0 and if he uses
the strategy given by f , he is able to deliver the asset at time T independently
of the variations of the price.

So, when P(T) is of the form 4.1, the problems of Pricing and Hedg-
ing are theoretically perfectly known. When this hypothesis is fulfilled
by all the financial products (we say in this case that the market is
complete ), the initial question is (in theory...) entirely solved!!!

To conclude, we can remark that the representation theorem of Brownian
martingales (seen in the preceding chapter) is the fundamental theoretical result
that will ensure the completeness of considered markets. It is one of the secrets
of the mathematics that underpins pricing models for derivative securities...

4.1.3 Is the stochastic calculus a new invisible hand?

From the preceding considerations (deep links between a powerful mathemati-
cal theory and financial applications) the reader could hastily deduce that the
mystery of the Adam Smith’s invisible hand (a perfect machine that naturally
produces fair prices) has been revealed 2 centuries after its discovery. To conclude
this paragraph let us meditate the following anecdote:

In 1997, Scholes and Merton shared the Nobel Memorial Prize in Economics. In
1994 they founded a hedge fund named Long-Term Capital Management. Initially
enormously successful with annualized returns of over 40% in its first years, in
1998 it lost 4.6 billions in less than four months and became the most prominent
example of the risk potential in the hedge fund industry. The fund almost folded
in early 2000...([3])
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4.2 Modelling financial markets in continuous

time

Let us work on the period [0, T ] (T is called the expiration or maturity date) and
on a probability space Ω that represents the space of all the possible macroeco-
nomic configurations during this period. The space Ω is equipped with a σ-algebra
A and with a probability P called the historical probability.

In practice the information needed for the perfect knowledge of A and P is
not available.

4.2.1 Description of financial assets

Here we simply consider a market with two financial assets.

The non risky asset: We suppose that during the period [0, T ] it is possible
to borrow and lend cash at a constant rate r > 0. Thus, if S0

t denotes the value
at time t of one euro lent at time t = 0, one has, ∀t ∈ [0, T ], S0

t = ert. This as-
set is called the non risky asset because its value is independent from randomness.

When (Xt)t∈[0,T ] is a stochastic process, we denote by (X̃t)t∈[0,T ] the associated

actualized process i.e X̃t = Xt

ert

The risky asset: For us it will be essentially the ownership of a small piece
of a company traded on a stock exchange (in opposition with over the counter
markets...). The term risky comes from the fact that, contrary to the preced-
ing one, the value of this asset depends on randomness (unpredictable macro-
economic changes). Let us denote by St the (random) value of this asset at time
t. Thus (St)t∈[0,T ] is a stochastic process adapted to its natural filtration (Ft)t∈[0,T ]

(Ft = σ(Su;u ≤ T )) and supposed to be continuous. The σ-algebra Ft represents
the information available at time t.

HYP: We suppose that the dynamic of the risky asset is given by
an Itô process whose value at 0 is a constant!

Remark 4.2.1 Under the preceding hypothesis, a random variable that is F0

measurable is a constant.

4.2.2 Financial strategies

HYP: no market frictions
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i) There are no transaction costs or taxes.

ii) It is possible to short sell the risky asset and to borrow and lend
cash.

iii) All securities are perfectly divisible (e.g. it is possible to buy
1/100th of a share).

iv) Trading is done in continuous time.

v) The risky asset does not pay a dividend.

Definition 4.2.1 A financial strategy is a progressively measurable process (Ht =
(θ0
t , θt)t∈[0,T ]) with values in R2 such that the integrals∫ T

0

θ0
t dS

0
t and

∫ T

0

θtdSt

are well defined. We associate to any financial strategy a financial portfolio con-
taining at time t ∈ [0, T ] θ0

t unities of non risky asset and θt unities of risky asset.
Thus, the value at time t ∈ [0, T ] of such a portfolio is given by

V H
t = θ0

tS
0
t + θtSt. (4.2)

Remark 4.2.2 a) The measurability condition on the process (Ht)t∈[0,T ] is intu-
itive: a decision (sell or buy) taken at t is naturally based on the information
available at this time i.e Ft.

b)The fact that (Ht)t∈[0,T ] is indexed by [0, T ]and with values in R2 is a conse-
quence of ii), iii) and iv).

c) (4.2) is a consequence of i) and v).

4.2.3 Self-financing condition

Definition 4.2.2 A financial strategy (Ht)t∈[0,T ] is said to be self-financed if the
value of the associated portfolio fulfills the following S.D.E:

dV H
t = θ0

t dS
0
t + θtdSt. (4.3)

Remark 4.2.3 On the time interval [t, t+ dt], (4.3) implies that

V H
t+dt − V H

t =

∫ t+dt

t

θ0
udS

0
u +

∫ t+dt

t

θudSu :

changes in the value of the portfolio only come from changes in the assets values.
Between 0 and T , we don’t have the right to consume or to invest, the only
possibility is to rebalance the portfolio.
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Lemma 4.2.1 Let (Ht)t∈[0,T ] and (H ′
t)t∈[0,T ] be two self-financed financial strate-

gies such that ∀t ∈ [0, T ],

V H
t = V H′

t P.a.s

then H and H ′ are equal up to indistinguishability.

Proof: It is a direct consequence of the self-financing condition (4.3) and of
proposition 2.4.2.2

Proposition 4.2.1 A strategy is self-financed if and only if

dṼ H
t = θtdS̃t (4.4)

Proof: Suppose that (Ht)t∈[0,T ] is self-financed i.e dV H
t = θ0

t dS
0
t + θtdSt. Since

Ṽ H
t =

V H
t

ert with d(e−rt) = −re−rtdt, applying the integration by part formula
(2.17)

dṼ H
t = e−rtdV H

t −V H
t re

−rtdt = e−rtθ0
t dS

0
t + e−rtθtdSt− θ0

tS
0
t re

−rtdt− θtStre−rtdt

thus,

dṼ H
t = e−rtθtdSt − θtStre

−rtdt = θt(e
−rtdSt − Stre

−rtdt) = θtdS̃t.

The reciprocal is left to the reader as an exercise.2

Remark 4.2.4 The preceding proposition ensures that the value of a self-financed
strategy only depends on the initial value and the quantity of risky asset. The
quantity of non risky asset may be deduced from

Ṽ H
t = θ0

t + θtS̃t. (4.5)

From now on, we will use the notation V x,θ (x being the initial value) for V H .

4.2.4 Arbitrages

Definition 4.2.3 A self financed strategy (Ht)t∈[0,T ] is said to be an arbitrage
opportunity (A.O) if the following conditions are fulfilled

V H
0 = 0, V H

T ≥ 0 P − a.s and P (V H
T > 0) > 0. (4.6)

In other terms, starting from zero (no investment), we never lose and there are
real profit opportunities.
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Remark 4.2.5 The concept of A.O depends on the choice of the historical prob-
ability P . Nevertheless, if P ∗ is a probability measure equivalent to P , we may
replace P by P ∗ in the preceding definition.

Example 4.2.1 If you have the opportunity to buy and sell the same stock on
two different markets at two different prices, there exists a trivial A.O: one can
buy the less expensive one and sell the more expensive to do a riskless profit (if
there are no transaction costs...). Because the differences between the prices are
likely to be small (and not to last very long), this can only be done profitably
with computers examining a large number of prices and automatically exercising
a trade when the prices are far enough out of balance. In a “good” situation, such
an opportunity should never exist.

On financial markets, there exist practitioners called arbitrageurs
paid to detect arbitrage opportunities. All things being equal, the
action of these investors buying and selling to exploit the arbitrage
opportunity will cause the market price of the stock to move in the
direction that quickly eliminates the arbitrage (according to the law
of supply and demand). In classical modelling we will always suppose
that A.O never exist (at the very least for a large family of financial
strategies).

4.2.5 Equivalent martingale measures (E.M.E)

Definition 4.2.4 An E.M.M is a probability measure P ∗ equivalent to P under
which the actualized price (S̃t)t∈[0,T ] of the risky asset is a martingale.

There is a deep (and technical..) link between the existence of E.M.M and the
absence of arbitrage opportunities for general continuous time models (see for
example [4] for more details on this topic). In this lecture, we restrict ourselves
to the following result:

Suppose that a E.M.M P ∗ exists.

Definition 4.2.5 A financial strategy (Ht)t∈[0,T ] is said to be P ∗ admissible if it

is self-financed and if the actualized value of the associated portfolio (Ṽ H
t ) is a

martingale under P ∗.

Proposition 4.2.2 There are no arbitrage opportunities (N.A.O) among P ∗ ad-
missible financial strategies.

Proof: According to remark 4.2.5, we may consider P = P ∗ in the definition
4.2.3. Thus, if H is a P ∗ admissible financial strategy fulfilling V H

T ≥ 0 P ∗ a.s
and P ∗(V H

T > 0) > 0, since V H
0 = E[Ṽ H

T |F0] = E[Ṽ H
T ], then V H

0 > 0 so H is not
an A.O.2
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Exercise 4.2.1 If the values of two portfolios (associated to two P ∗ admissible
financial strategies) are equal (P -a.s) at time T , show that they coincide (P -a.s)
at any time t ∈ [0, T ].

4.2.6 Contingent claims

Definition 4.2.6 Contingent claims are assets whose prices depend on the values
of other assets (for us the risky one). In our framework, it will be FT measurable
random variables (fulfilling some technical integrability conditions).

Example 4.2.2 a) A european Call of maturity T and strike K on the risky
asset is a financial product giving the right (and not the obligation) to buy at time
T a risky asset for a certain price K fixed at t = 0. The value at T of this product
(i.e when everything is known) is equal to Max(ST − K, 0) := (ST − K)+ (this
quantity is called the payoff of the call).

a) A european Put of maturity T and strike K on the risky asset is a fi-
nancial product giving the right (and not the obligation) to sell at time T a risky
asset for a certain price K fixed at t = 0. The value at T of this product (i.e
when everything is known) is equal to Max(K − ST , 0) := (K − ST )+.

These two products, giving rights to their owners, have a price (called the
premium) paid at t = 0 that have to be determined.

4.3 Study plan and objectives

Step 1: Model the dynamic of the asset.

We have to deal with two contradictory constraints :

1) The model has to be sufficiently fine to represent the reality.

2) The model has to be sufficiently simple to be operational (cf infra).

Step 2: Study the properties of the model.

Notably, is the N.A.O condition fulfilled?

Step 3: Propose a price for a large family of contingent claims
(PRICING).
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Moreover, we have to be able to effectively perform this price:

a) Obtaining closed form formula with known (at least from a statistical point
of view) parameters.

b) Obtaining theoretical formula that can be approximate by efficient numer-
ical methods (discretization, Monte Carlo).

Step 4: Propose financial strategies to reduce all risks due to ran-
dom fluctuations of the underlying (HEDGING).

When the price of a contingent claim is fixed, how to use the premium to
ensure its delivery independently of randomness?

Step 5: (Finally....) Confront the model with reality.

1) Reality of financial markets

Several contingent claims are quoted on derivatives markets. It is especially
the case for call and put options. Thus we have to

a) Compare our prices with the ones proposed by the market (calibrating the
parameters to fit the data)

b) Propose prices for claims traded on over the counter markets.

2) Reality of other models

We have to compare our model with the existing ones. Some criteria may be:

a) Precision

b) Complexity (computing time...)

c) Field of applications (products that may be priced and hedged....)
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Chapter 5

The Black-Scholes model

5.1 The model

5.1.1 Dynamic of the risky asset

In the Black-Scholes model ([2]), the dynamic of the risky asset is given by the
following SDE:

dSt = bStdt + σStdBt (5.1)

with initial condition S0 = x0 > 0. We have already seen (prop 2.5.1) that this
SDE has a unique solution given by the geometric Brownian motion

St = x0e
(b− 1

2
σ2)t+σBt . (5.2)

Remark 5.1.1 It is easy to deduce from the preceding formula that in the case of
the Black-Scholes model the associated information filtration is none other than
the Brownian filtration.

Remark that this stochastic process is nonnegative and a priori only depends
on two parameters b and σ respectively known as the drift and the volatility (in
general the volatility is the ratio diffusion coefficient

price of the stock
). This terminology is very

intuitive because σ measures the sensitivity to randomness i.e to the risk and
because the relation E[St] = x0e

bt shows that, on average, the value of the stock
increases as the value of a non-risky asset associated to the constant interest rate
b.

Remark 5.1.2 The question of such a choice (5.2) to represent the value of the
stock naturally arises. To obtain this dynamic Black and Scholes have done the
following hypotheses:
1) Continuity of trajectories.
2) Stationarity of returns: the distribution of St+h−St

St
doesn’t depend on h.

97
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3) Independence of returns: St+h−St

St
⊥FS

t .
We know (use lemma 1.1.1 with Xt = log(St)) that these hypotheses imply a
dynamic of the form (5.2).

Moreover, it can be shown that the preceding dynamic is the one obtained pass-
ing to the limit in the so-called discrete time model of Cox, Ross and Rubinstein
([4]).

Nevertheless, we will discuss later of the limits of this hypothesis.

5.1.2 Existence of an EMM

Proposition 5.1.1 In the Black and Scholes model there exists an EMM (def
4.2.4).

Proof: Since dSt = bStdt + σStdBt, we obtain from the integration by parts
formula (exercise 2.4.1) that

dS̃t = S̃t(b− r)dt+ σS̃tdBt (5.3)

and putting Wt = Bt +
b−r
σ
t,

dS̃t = σS̃tdWt. (5.4)

According to the Girsanov theorem (prop 3.1.1), (Wt)t∈[0,T ] is, under the proba-
bility P ∗

0 defined by

dP ∗
0 = e(

b−r
σ

)BT e+
( b−r

σ )2T

2 dP, (5.5)

a standard Brownian motion. Thus (prop 2.5.1)

S̃t = S̃0e
σWt−σ2t

2

and the process (S̃t)t∈[0,T ] is a martingale under P ∗
0 (prop 1.3.1).2

Remark 5.1.3 The probability P ∗
0 is a EMM also called a risk neutral probability.

In fact, under P ∗
0 ,

dSt = rStdt+ σStdWt

where W is a standard B.M. Thus, under P ∗
0 , St increases, on average, as the

non-risky asset.

Moreover we can remark that FB
t = FW

t , ∀t ∈ [0, T ].

5.2 P ∗ admissible financial strategies

Let P ∗ be a fixed EMM. We denote by E∗[.] the expectation with respect to
P ∗ in opposition with E[.] that is the expectation with respect to the historical
probability P .
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5.2.1 Definition

For technical issues, we will work, from now on, with particular self-financed
strategies : P ∗ admissible financial strategies.

Definition 5.2.1 In the Black-Scholes model, a financial strategy H is said to
be P ∗ admissible if it is self-financed and if the actualized value of the associated
portfolio (Ṽ x,θ

t )t∈[0,T ] is a squared integrable and nonnegative martingale (under
P ∗).

Remark 5.2.1 Remind that in the definition of financial strategies (def 4.2.1)
the integrals∫ T

0

θ0
t dS

0
t =

∫ T

0

θ0
t re

rtdt and

∫ T

0

θtdSt =

∫ T

0

θtStbdt+

∫ T

0

σθtStdBt

have to be well defined.
If we suppose that

θ0 ∈ H1
loc(Ω× [0, T ]) (5.6)

the first one exists P -a.s (or P ∗-p.p) and if we suppose that

θ ∈ H2
loc(Ω× [0, T ]), (5.7)

(the stochastic process (St)t∈[0,T ] being continuous on a compact set) then θtStb ∈
H1
loc(Ω × [0, T ]) and σθtSt ∈ H2

loc(Ω × [0, T ]). Thus, the second integral is well-
defined.

Remark that the definitions of H1
loc(Ω× [0, T ]) and H2

loc(Ω× [0, T ]) is indepen-
dent of the choice of P or P ∗.

5.2.2 P ∗-completeness of the market

Definition 5.2.2 In this part, a contingent claim is a nonnegative random vari-
able h in L2(Ω,FB

T , P
∗).

Example 5.2.1 Puts and Calls are contingent claims.

Definition 5.2.3 A contingent claim is said to be P ∗ attainable if it is equal to
the final value of a portfolio associated to a strategy P ∗ admissible.

Definition 5.2.4 The financial market is P ∗ complete is all contingent claims
are P ∗ attainable.

We have the following fundamental result:
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Theorem 5.2.1 The Black and Scholes model is P ∗ complete. Moreover, the
value at time t of any hedging portfolio is given by

Vt = E∗[he−r(T−t)|FB
t ]. (5.8)

In particular, according to proposition 2.5.3, Vt is a function of t and St.

Proof: Since (Ṽ x,θ
t )t∈[0,T ] is a martingale under P ∗, the second point is obvious.

For the first one, we only give the proof in the case where P ∗ = P ∗
0 (the general

case being similar). We still adopt the notations introduced in the proof of the
theorem 5.1.1.

Let h be a contingent claim (for P ∗
0 ). Under the probability P ∗

0 , the process
defined by Mt = E∗[e−rTh|FB

t ] is a squared integrable martingale with respect to
the Brownian filtration (FW

t ) (remark 5.1.3) thus, according to Theorem 3.2.2,
there exists a stochastic process (Kt)t∈[0,T ] ∈ L2

prog(Ω× [0, T ], P ∗
0 ) such that ∀t ∈

[0, T ],

Mt = M0 +

∫ t

0

KsdWs P ∗
0 a.s. (5.9)

From (5.4),

Mt = M0 +

∫ t

0

Ks

σS̃s
dS̃s P ∗

0 a.s, (5.10)

and putting

θt =
Kt

σS̃t
and θ0

t = Mt − θtS̃t, (5.11)

the process H = (θ0, θ) is a financial strategy (in the sense of definition 4.2.1)
fulfilling ∀t ∈ [0, T ],

Ṽ H
t = Mt.

Thus (Ṽ H
t )t∈[0,T ] is (under P ∗

0 ) a squared integrable and nonnegative martin-
gale. From (5.10) and proposition 4.2.1, the strategy H is self-financed. Finally,
H is P ∗

0 admissible with V H
T = h, the conclusion holds.2

5.2.3 N.A.O among P ∗ admissible strategies

The following result is none other than proposition 4.2.2.

Proposition 5.2.1 There is N.A.O among P ∗ admissible strategies.

Remark 5.2.2 Note that, in general, there is no N.A.O among self-financed
strategies. This particularity doesn’t appear in discrete time models but is funda-
mental for the continuous time ones.
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5.3 Unicity of the risk neutral probability

The following result (that will be admitted) is a consequence of the P ∗ com-
pleteness of the Black-Scholes model and of the N.A.O among P ∗ admissible
strategies.

Proposition 5.3.1 In the Black-Scholes there exists a unique E.M.M (i.e P ∗
0 ).

Remark 5.3.1 From now on, we will denote by P ∗ the unique risk neutral prob-
ability (or EMM) given by (5.5). We will speak about admissible strategies, con-
tingent claims or completeness referring implicitly to P ∗.

5.4 Pricing, Hedging

The brilliant idea of Black and Scholes was to propose the following definition for
the price of a contingent claim.

Definition 5.4.1 The price, at time t ∈ [0, T ], of a contingent claim h is the
value at time t of any hedging portfolio associated to an admissible strategy (such
a portfolio always exists according to Theorem 5.2.1). The price process will be
denoted by (P h

t )t∈[0,T ], it is a martingale under P ∗.

Remark 5.4.1 a) This notion is both independent of the choice of an EMM (by
unicity) and of a hedging strategy (theo 5.2.1). Moreover, the price at time t is
given by (5.8). The EMM has no deep economical interpretation (contrary to the
historical probability) but is a powerful tool to compute prices.

b) In some financial model in continuous time, the unicity of the EMM is not
fulfilled. For a given contingent claim several prices (in the sense of Black and
Scholes) are possible. In this case we obtain a price bracket. Nevertheless, it is
possible to show that the minimum of these prices is the smallest initial value of
any portfolio that super-replicates the claim.

For the hedging problem, we adopt the seller’s point of view. This seller pro-
poses at t = 0 a financial product perfectly described by its payoff h (at T ). The
price of such a claim t = 0 is given by E∗[herT ]. Now the following question nat-
urally arises: How to use this amount of money in order to be able to deliver the
claim at T independently of randomness? In theory the answer is quiet simple,
we only have to build the hedging portfolio given by the Brownian martingales
representation theorem (formula (5.11)). Remark that this strategy is unique by
unicity of the decomposition of an Itô process (propo 2.4.2). Finally this strategy
in continuous time ensures a perfect elimination of risk.
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From a practical point of view, a first problem occurs. The Brownian martin-
gales representation theorem (in the version proposed in chapter 3) is an abstract
result of existence. Nevertheless, we are going to see that in important particular
cases the strategy may be explicit. Moreover it can be remarked that a general
answer to this important question may be found using the tools of the Malliavin
calculus (see [16]).

5.5 Pricing and Hedging when h = f (ST )

We are in the case of “path-independent” financial products.

Let f : R → R be a measurable function such that E∗[f 2(ST )] < +∞. The
value at time t of the contingent claim h = f(ST ) is

P h
t = E∗[e−r(T−t)f(ST )|FB

t ]

with ( under the probability P ∗)

dSt = rStdt+ σStdWt

thus

St = e(r−
1
2
σ2)t+σWt .

According to exercise 1.3.1 (or proposition 2.5.3), we have

P h
t = e−r(T−t)

∫ +∞

−∞
f(Ste

(r− 1
2
σ2)(T−t)+σy

√
T−t)

1√
2π
e−

y2

2 dy. (5.12)

Thus P h
t = F (t, St) where

F (t, x) = e−r(T−t)
∫ +∞

−∞
f(xe(r−

1
2
σ2)(T−t)+σy

√
T−t)

1√
2π
e−

y2

2 dy. (5.13)

Remark that this formula doesn’t depend on the drift coefficient b.

We have the following proposition that specify the regularity of F . In practice,
this regularity is a simple consequence of changes of variables and of the Lebesgue
theorem.

Lemma 5.5.1 Under weak hypotheses (for example when h is the payoff of a
Call or a Put), the function F belongs to C1,2([0, T [×R,R).

Now we are able to state the following fundamental result.
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Proposition 5.5.1 When h = f(ST ), the quantity of risky asset to put in the
hedging portfolio at time t is given by

θt =
∂F

∂x
(t, St). (5.14)

Moreover, the function F satisfies the following PDE:

∂F

∂t
(t, x) + rx

∂F

∂x
(t, x) +

σ2x2

2

∂2F

∂x2
(t, x) = rF (t, x) (5.15)

with final condition F (T, x) = h(x).

Proof: Let F̃ (t, x) = e−rtF (t, xert). Thus P̃ h
t = F̃ (t, S̃t). According to the Itô

formula (prop 2.4.5) (lemma 5.5.1 ensures that the hypotheses are fulfilled), one
has

F̃ (t, S̃t) = F̃ (0, S̃0) +
∫ t

0
∂F̃
∂x

(u, S̃u) dS̃u︸︷︷︸
σS̃udWu

+
∫ t

0
∂F̃
∂t

(u, S̃u)du+ 1
2

∫ t
0
∂2F̃
∂x2 (u, S̃u)σ

2S̃2
udu.

In the same way, using the self-financing condition we obtain

F̃ (t, S̃t) = F̃ (0, S̃0) +

∫ t

0

θudS̃u.

From proposition 2.4.2, we deduce

θt =
∂F̃

∂x
(u, S̃u) =

∂F

∂x
(t, St)

and
∂F̃

∂t
(u, S̃u) +

1

2

∂2F̃

∂x2
(u, S̃u)σ

2S̃2
u = 0.

Since

∂F̃

∂t
(u, S̃u) = −re−ruF (u, Su) + e−ru

∂F

∂t
(u, Su) + re−ruSu

∂F

∂x
(u, Su)

and
∂2F̃

∂x2
(u, S̃u) = eru

∂2F

∂x2
(u, Su)

then
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−re−ruF (u, Su)+e
−ru∂F

∂t
(u, Su)+re

−ruSu
∂F

∂x
(u, Su)+

1

2
e−ruσ2S2

u

∂2F

∂x2
(u, Su) = 0.

The function x0 ∈ R+ → Su ∈]0,+∞[ being onto, we have

∂F

∂t
(t, x) + rx

∂F

∂x
(t, x) +

σ2x2

2

∂2F

∂x2
(t, x) = rF (t, x)

with F (T, x) = h(x).2

Remark 5.5.1 In the Black-Scholes model, It is very interesting to notice that
the prices of contingent claims may be seen as an expectation (5.12) or as the
solution of an explicit PDE (5.15). From a numerical point of view this fact is
remarkable because it allows to use probabilistic methods (Monte Carlo) or tools
from numerical analysis (discretization schemes) to price and hedge contingent
claims. This fact may be extended to more general financial models and the choice
of such a method depends on the nature of the problem (regularity, dimension,
etc....).

5.6 Black and Scholes formula

This so-called formula gives the price of a Call in our framework.

Proposition 5.6.1 The price at time t of an european call (with strike K and
maturity T ) is given by

Ct = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St)) (5.16)

where

d1(t, x) =
log( x

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

et d2(t, x) =
log( x

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

(5.17)
and where N is the distribution function of a N (0, 1). In this case, the composi-
tion of the hedging portfolio is given by

θt = N(d1(t, St)) > 0 and θ0
t = −Ke−rTN(d2(t, St)) < 0. (5.18)

Proof: We have (5.12),

Ct = F (t, St)
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where

F (t, x) =

∫ +∞

−∞

(
xe−

1
2
σ2(T−t)+σy

√
T−t −Ke−r(T−t)

)
+

1√
2π
e−

y2

2 dy. (5.19)

But we can show that

xe−
1
2
σ2(T−t)+σy

√
T−t −Ke−r(T−t) ≥ 0 ⇔ y ≥ −d2(t, x).

Thus

F (t, x) =
∫ +∞
−d2

(
xe−

1
2
σ2(T−t)+σy

√
T−t −Ke−r(T−t)

)
1√
2π
e−

y2

2 dy

=
∫ d2
−∞

(
xe−

1
2
σ2(T−t)−σy

√
T−t −Ke−r(T−t)

)
1√
2π
e−

y2

2 dy.

Separating the two integrals and using the change of variables z = y + σ
√
T − t

in the first one, we obtain

F (t, x) = xN(d1(t, x))−Ke−r(T−t)N(d2(t, x)).

Thus (5.16) and (5.18) are proved easily.2

Exercise 5.6.1 Consider a call and a put on the risky asset with the same ma-
turity T and the same strike K. Let us denote by Ct and Pt their prices at
time t ∈ [0, T ]. Using exercise 4.2.1, show that the following relation ( called the
call-put parity) is fulfilled:

Ct +Ke−r(T−t) = Pt + St. (5.20)

Deduce from the preceding proposition that the price of the put at time t is given
by

Pt = Ke−r(T−t)N(−d2(t, St))− StN(−d1(t, St)) (5.21)

and that the composition of the hedging portfolio is

θt = −N(−d1(t, St)) < 0 and θ0
t = Ke−rTN(−d2(t, St)) > 0. (5.22)

Remark 5.6.1 The prices of the put and of the call are functions of (σ, St, r,K, T−
t). The parameter T − t is called “time to maturity”.

The following graph represents the price surface F (t, x) as a function of x and
100(T − t). We have taken r = 9%, σ = 30%, T = 0.6, K = 40.
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5.7 The greeks

5.7.1 Definition

The greeks measure the sensitivity of the option prices to parameters (price of
the underlying, time, volatility). In practice these quantities are fundamental.
(cf infra).

When h is a contingent claim, we know that its price at time t has the form
F (t, St).

Definition 5.7.1 We call “greeks” the following quantities:

• ∆ measures the sensitivity of the price to the underlying

∆t(St) =
∂F

∂x
(t, St) (5.23)

• Γ measures the sensitivity of the delta to the underlying

Γt(St) =
∂2F

∂x2
(t, St) (5.24)

• Θ measures the sensitivity of the price to the time

Θt(St) =
∂F

∂t
(t, St) (5.25)
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• ρ measures the sensitivity of the price to the interest rate

ρt(St) =
∂F

∂r
(t, St) (5.26)

• vega (that is not a greek letter!!!) measures the sensitivity of the price to
the volatility

vegat(St) =
∂F

∂σ
(t, St). (5.27)

Using these definitions, the Black and Scholes PDE may be rewritten (in the
framework of paragraph 5.5) in the following way

Θt(x) + rx∆t(x) +
σ2x2

2
Γt(x) = rF (t, x).

Exercise 5.7.1 For calls and puts, show that the values of the greeks at t = 0
are given by the following board:

Call Put

∆ N(d1) > 0 −N(−d1) < 0

Γ 1
xσ
√
T
N ′(d1) > 0 1

xσ
√
T
N ′(d1) > 0

Θ − xσ
2
√
T
N ′(d1)−Kre−rTN(d2) < 0 xσ

2
√
T
N ′(d1) +Kre−rT (N(d2)− 1) ??

ρ TKe−rTN(d2) > 0 TKe−rT (N(d2)− 1) < 0

vega x
√
TN ′(d1) > 0 x

√
TN ′(d1) > 0

Remark that in this particular case, once the parameters of the model are spec-
ified, to evaluate the greeks we only have to compute the distribution function of a
Gaussian measure. This computation is not explicit (no closed form formula) but
there exist good numerical approximations for this problem (see [11]). In other
respects, we can also use the function “cdfnor” of scilab.

5.7.2 Payoff of the form h = f(ST )

We restrict ourselves to the delta and the gamma.

When h = f(ST ) we have already seen that P h
t = F (t, St) with

F (t, x) = e−r(T−t)
∫ +∞

−∞
f(xe(r−

1
2
σ2)(T−t)+σy

√
T−t)

1√
2π
e−

y2

2 dy.
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Proposition 5.7.1 We have

∆t(x) = e−r(T−t)E∗
[

WT−t

xσ(T − t)
f(SxT−t)

]
(5.28)

and

Γt(x) = e−r(T−t)E∗
[(

−WT−t

x2σ(T − t)
+
W 2
T−t − (T − t)

(σ(T − t)x)2

)
f(SxT−t)

]
(5.29)

where (Sxt ) is (under P ∗) the geometric B.M with initial condition Sx0 = x.

Proof: We only prove (5.28), the method being the same for (5.29). We first
suppose that f ∈ C1

K(R,R). (For the general case we use approximations...)

Using differentiation under the integral sign, we have

∆t(x) = e−r(T−t)
∫ +∞

−∞

∂

∂x
f(xe(r−

1
2
σ2)(T−t)+σy

√
T−t)︸ ︷︷ ︸

g(x,y)

1√
2π
e−

y2

2 dy.

But
∂g

∂x
(x, y) =

1

xσ
√
T − t

∂g

∂y
(x, y).

Thus by using integration by parts,

∆t(x) =
e−r(T−t)

xσ
√
T − t

∫ +∞

−∞
f(xe(r−

1
2
σ2)(T−t)+σy

√
T−t)

y√
2π
e−

y2

2 dy.

Under P ∗, dSxt = rSxt dt+ σSxt dWt so

Sxt = xe(r−
1
2
σ2)t+σWt ,

thus,

∆t(x) = e−r(T−t)E∗
[

WT−t

xσ(T − t)
f(SxT−t)

]
.2

Exercise 5.7.2 Show that

vegat(x) = x2TσΓt(x).
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5.7.3 Practical use of ∆ and Γ

In the framework of paragraph 5.5 we have seen that ∆t(St) has an important
financial interpretation: It is the quantity of risky asset to put in the hedging
portfolio at time t. Thus Γ represents the sensitivity of this quantity of risky
asset to variations of the underlying. Thus Γ is a measure of by how much or how
often a position must be rehedged in order to maintain a delta neutral position.
Since in real life markets transaction costs can be large (contrary to our theo-
retical hypothesis) Γ is very important for the cost-effectiveness of our hedging
strategy. That’s why its knowledge is fundamental.

5.8 Black and Scholes in practice

(See also the Appendix)

5.8.1 Estimating volatility σ

Hedging and pricing strategies only depend on a unique and constant parameter
not directly observable: the volatility (b disappears in the risk neutral universe)
that is the most important and elusive quantity in the modern theory of deriva-
tives. The problem of its estimation naturally arises.

One way to proceed is to use historical data. Let T̃ ∈ R+. From observations
of the dynamic of the stock in the past [−T̃ , 0], we can estimate σ by statistical
methods. First we suppose that the dynamic in the intervall [−T̃ , 0] is the same
as in the intervall [0, T ]. Let N ∈ N∗ be the number of observations, the random
variables

Y N
1 = Log

(
S0

S−T̃
N

)
, . . . , Y N

N = Log

(
S−T̃

S−(N−1)T̃
N

)
are, under the historical probability, a N -sample of a

N ((b− σ2

2
)
T̃

N
, σ2 T̃

N
).

The most common estimator of σ is the empirical variance

σ̂ =

√√√√ N

T̃ (N − 1)

N∑
i=1

(Y N
i − Y )2

where

Y =
1

N

N∑
i=1

Y N
i .



110 CHAPTER 5. THE BLACK-SCHOLES MODEL

In practice, we take T̃ = T to exclude the old and meaningless data. Remark
that in real markets, the choice of N is limited by the frequence of the observed
quotations. Moreover, more complicated procedures (GARCH models) may be
used for a better understanding of this problem.

5.8.2 Pricing and Hedging

To determine the price of a financial product, the practitionner uses the formula

P h
0 = E∗[e−r(T )f(ST )].

After that, he adopts the delta hedging strategy to eliminate (in theory) the
risk due to randomness. This means that the number of assets held (∆t(St) at
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time t for the risky one) must be continuously changed to maintain the position.

In reality, the portfolio is rehedged in discrete time because:

a) physical transactions are inevitably discrete

b) costs to buy or sell limit the number of transactions.

That’s why some risks associated with the model will appear. This is one of
the most important problem of continuous time modelization.

In practice on a time intervall [t, t+h], the seller computes ∆ in t. The question
is to know if he may keep its position until t+h without commiting a big hedging
error. In this way, he computes Γ in t. If the absolute value of Γ is big, the seller
must rebalanced the portfolio between t and t + h. If the Γ is small enough he
may maintains its position. Remark that there is an important duality between
a “good” hedging and its cost. That’s why the price of a contingent claim may
be seen in the following way:

Real price = Theoretic price (cost of the theoretic hedging) + transaction costs
+ profit marging.

Remark that the vega also has an important role in the precautions to take
for the estimation of σ (preceding part).

5.8.3 Numerical computations of prices, of ∆ and of Γ

As far as Calls and Puts are concerned, prices, ∆ and Γ are given by explicit
formulas (i.e closed form formulas). From a numerical point of view, we only
have to compute the distribution function of a N (0, 1) (its a classical problem,
see for example the command “cdfnor” of scilab). Unfortunatly, when the payoff
is more complicated such formulas are no more availlable and we have to use
some approximation tools e.g Monte Carlo methods (see [3]).

Reminder: The Monte Carlo method is based on the SLLN: Let (Xn) be a
sequence of i.i.d random variables such that X ∈ L1. Putting Sn = X1 + ...+Xn,
we have

Sn
n

→
a.s and L1

E[X1].

This result provides approximate solutions to perform expectations. (Remark
that the speed of convergence is given by the C.L.T).

Here we have to evaluate
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F (t, x) = e−r(T−t)E∗ [f(SxT−t)
]
, ∆t(x) =

∂F

∂x
(t, x) and Γt(x) =

∂2F

∂x2
(t, x)

where (Sxt ) is a geometric Brownian motion with initial condition Sx0 = x.

For F (t, x), we may use the classical Monte Carlo method because a N -sample
of (SxT−t) is easy to simulate. For the other quantities (first and second derivatives
with respect to x ), one classical way is to use finite difference schemes i.e to use
the following approximations (think about Taylor formula...)

∆t(x) ≈
F (t, x+ h)− F (t, x− h)

2h

Γt(x) ≈
F (t, x+ h) + F (t, x− h)− 2F (t, x)

h2

where h is small enough and where F (t, x + h), F (t, x − h) and F (t, x) are per-
formed by Monte Carlo method.

Problem for the greeks:

• This method embodies two different errors: discretization of the derivative
function by a finite difference (choice of h???) and imperfect estimation of
the option prices F (t, x+ h), F (t, x− h) and F (t, x)

• In the case of a strongly discontinuous payooff function, a well known fact
is its poor convergence to the exact solution.

To overcome this problem, we use proposition 5.7.1. In fact, we have proved
that

∆t(x) = e−r(T−t)E∗
[

WT−t

xσ(T − t)
f(SxT−t)

]
and

Γt(x) = e−r(T−t)E∗
[(

−WT−t

x2σ(T − t)
+
W 2
T−t − (T − t)

(σ(T − t)x)2

)
f(SxT−t)

]
.

Thus, in the Black-Scholes model theses quantities may be performed without
finite differences.

Avantages:
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• Only one error (MC)

• Weight independent of the payoff

• More efficient for Γ (second derivative) than for ∆ (first derivative).

Exercise 5.8.1 Consider a digital charracterized by its payoff IST≥K à T .

a) Show that F (0, x) = e−rTKN(d), ∆0(x) = e−rT

xσ
√
T
n(d) and Γ0(x) = e−rT

x2σ2T
n(d)

(
d+ σ

√
T
)

where n is the density function of a N (0, 1) and where d =
log( x

K
)+(r−σ2

2
)(T )

σ
√
T

.

b) Using scilab, compute ∆0(x) and Γ0(x) using the two preceding methods.
Compare the results.

c) Answer to the preceding questions in the case of a corridor option ( Payoff
IK2≥ST≥K1).

d) Define an empirical typology of option for which the weighted MC method
is more efficient than the traditional finite difference one.

Simulations

Using the preceding notations we takex = 100, K = 100, σ = 0, 15, r = 0, 05,
T = 1, K1 = 95, K2 = 105.

Delta Call

0,64

0,645

0,65

0,655

0,66

0,665

0,67

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Nbre de Simulations (10E4)

d
el

ta

Mall

DF

Valeur Theo:0,6584855
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Gamma Call

0,0225

0,023

0,0235

0,024

0,0245

0,025

0,0255

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Nbre simulations(10E4)

G
am

m
a Mall

DF

Valeur theo 0,0244688

Delta Digitale

0,02

0,0203

0,0206

0,0209

0,0212

0,0215

0,0218

0,0221

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Nbre simulations (10E4)

D
el

ta

Mall

DF

Valeur Theo 0,0211279
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Gamma Digitale

-0,0015

-0,0014

-0,0013

-0,0012

-0,0011

-0,001

-0,0009

-0,0008

-0,0007

-0,0006

-0,0005

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Nbre Simulations (10E4)

G
am

m
a Mall

DF

Valeur Theo 0,001058

Delta Corridor

-0,0052

-0,0047

-0,0042

-0,0037

-0,0032

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Nbre de simulation (10E4)

D
el

ta

Mall

DF

Valeur Théo: -0,0041146
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Gamma Corridor

-0,002

-0,0015

-0,001

-0,0005

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Nbre de simulations (10E4)

G
am

m
a Mall

DF

Valeur Theo: -0,0009170

5.9 “Splendeurs et misères“ of the Black Sc-

holes model

In spite of some unrealistic assumptions (some of them will be discuss hereafter),
the Black-Scholes model remains a fundamental tool in modern finance. The
aim of this part is to introduce some important questions to continue the study
beyond this elementary lecture.

5.9.1 Advantages

Options have existed for centuries, but a major constraint upon their usefulness
was the enormous difficulties of their pricing. In a world where very little was
known about how options should be priced, trading options was a mixture of
guesswork and gambling, and very few economic agents participated in options
markets. With the analytical capabilities created by Black and Scholes, the option
has become a mainstream instrument ([13]), with millions of users all over the
world being able to meaningfully think about option pricing (within just a few
months after the Black–Scholes paper was published, Texas Instruments started
selling hand calculators which had the capability of evaluating the Black–Scholes
formula!!!).
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From an academic point of view, Scholes (and Merton...) received the 1997
Nobel Prize in Economics for this and related work; though ineligible because
of his death in 1995, the Swedish academy broke with tradition and mentioned
Black as a contributor.

How to explain such a success???

Simplicity and theoretical efficiency

The Black-Scholes model only depends on a parameter not directly observable:
the volatility that is a measure of the sensitivity to randomness (the stationarity
of returns implying the possibility to use statistical methods to estimate this
parameter). Moreover, the prices and the hedging strategies are perfectly and
easily known in the case of the simplest (and fundamental) contingent claims (e.g
call and put). Finally, in this framework there is (in theory cf [18]) no risk due
to randomness.

Several view points

For more complicated financial products, we know that prices may only be
obtained by numerical methods (no closed form formula). The Black Scholes
model is interesting because two complementary approaches may be used in this
case: A deterministic one linked to the approximation of solutions of P.D.E by
discretization schemes and a probabilistic one based on Monte Carlo methods.
We refer the reader to [7] and [19] for barrier options and to [12] and [20] for
asian ones.

A self fulfilling prophecy???

Fisher Black: “Les opérateurs savent maintenant utiliser la formule et les
variantes. Ils l’utilisent tellement bien que les prix de marché sont généralement
proches de ceux donnés par la formule, même lorsqu’il devrait exister un écart
important...”

The Black–Scholes formula is considered by some economists to be a “self
fulfilling prophecy” in the following sense: The formula relies on several unrealistic
assumptions, the most important of which is the assumption that transactions
costs are zero. In reality, the trading involved in maintaining the riskless position
in continuous time would involve significant transactions costs. Yet, option prices
in the real world are remarkably close to those predicted by the Black–Scholes
formula. One possibility is that if a sufficiently large mass of traders uses the
Black–Scholes formula as a working approximation, then the formula becomes
true. In this sense, it may be the case that the modern econ- omy has been
steered in a certain direction because the Black–Scholes formula was discovered
in 1973.
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5.9.2 Limites

The log-normal hypothesis

We refer the reader to [17] for more details on this topic.

The first modern attempt at analyzing options dates back to the year 1900,
when the young French mathematician Louis Bachelier wrote a dissertation at
Sorbonne titled The Theory of Speculation. Bachelier was the first person to
think about financial prices using the modern tools of probability theory. In
particular, he thought that it was possible to model the dynamic of an asset by a
“good” probability distribution that had the properties of the Brownian motion.
The approach that he took and many of the results that he obtained were far
ahead of their time. As a consequence, they were to lie dormant for sixty years.

Sixty five years later, Samuelson was the first to use the geometric Brown-
ian motion (instead of the Brownian motion) to impose positivity conditions on
prices.

From a technical point of view, these hypotheses (gaussian assumptions) were
fruitful, in particular, they allowed the study of the equilibrium of financial mar-
kets (see Markovitz, Sharpe and Linter) that’s why Black and Scholes used this
framework for their option pricing theory.

Nevertheless, in the middle of the sixties, Benoit Mandelbrot published an
empirical research into the distribution of cotton prices based on a very long
time series which found that, contrary to the general assumption that these price
movements were normally distributed, they instead followed a pareto-levy distri-
bution. In particular, in a normally distributed market, crashes and booms are
vanishingly rare, in a pareto-levy one crashes (extreme values) occur and are a
significant component of the final outcome.

This important problem is still an active field of research including the study
of ARCH, stochastic volatility or fractal models.

σ constant?

We refer the reader to [8] for more details on this topic.
You may consult the Web site “www.ivolatility.com” to obtain numerical data

for the volatility of some american underlying.

In the Black Scholes model, the volatility is the only parameter not directly
observable on the market. Since some elementary financial products are quoted
on derivatives markets (e.g european calls) it is possible, using the market data,
to have some knowledge on this parameter. In fact, remind that the price of a
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call is given by the following formula

Ct = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St))

where

d1(t, x) =
log( x

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

and d2(t, x) =
log( x

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

.

Thus, the price of the call is a strictly increasing function of the historical volatility
because

∂C

∂σ
(t, x) = x

√
T − tN ′(d1) > 0.

So, if we observe on the market the price at time t of a european call on the
risky asset (of maturity T and strike K) (this observed price is denoted by
CObs
t (x, T,K)), there exists a unique real number σimpl such that

CObs
t (x, T,K) = Ct(x, T,K, σ

impl).

Remark 5.9.1 The effective computation of the implicit volatility may be clas-
sically done using Newton or bisection type methods .

In the framework of Black and Scholes, the implicit volatility should be equal
to the historical one for all considered options. In practice, it is not the case. We
may observed that

• The implicit volatility is greater than the historical one

• The implicit volatility both depends on the maturity and on the strike.

For the second point, the following graph shows the strike dependency of the
volatility of a european call (here the underlying is quoted on the american S&P
500 market). The shape of the curve is really significant and called a smile of
volatility. In fact, for 500 ≤ K ≤ 1400, we can see that the function is nonin-
creasing (skew phenomenon) and when the strike is big it becomes nondecreasing
(smile phenomenon).
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Figure 5.1: An example of volatility smile

Roughly speaking, several empirical considerations may partially highlight this
fundamental phenomenon:

• The implicit volatility is bigger for the options that are out of the money
(K 6= S0). The market seems to give a greater probabilities to extreme
values than the ones observed in a log-normal model. (links with the pre-
ceding paragraph).

• The smile may be explained by the fact that the market is less liquid for
extreme strikes.

Remark 5.9.2 Today, practitioners make their reasonings in terms of implicit
volatility instead of price. Black Scholes formula has became a privileged transla-
tor.

To conclude, remark that in spite of the preceding considerations, praction-
ers use extensively Black-Scholes option pricing formula even to evaluate options
whose underlying is known to not satisfy the Black-Scholes hypothesis of a con-
stant volatility. In fact, when the Γ of an option is nonnegative (i.e convex payoff)
it can be shown that if the trader chooses a constant volatility bigger than the
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real one (that may be stochastic....) the value of his hedging portfolio will always
be greater then the payoff of the option at maturity (he never looses money).
This fundamental property is known as the robustness of the Black and Scholes
formula. In some sense it moderates the preceding criticisms.

Let us see this phenomenon in the case of a european call of maturity T and
strike K.

Suppose that the price of the stock is given (under the risk neutral probability
by) by

dSt = rStdt+ ΣtStdBt

where Σt is a regular stochastic process.
In spite of this dynamic, the practitioner computes his hedging portfolio using

the Black and Scholes formula with a constant volatility σ. Thus the quantity of
risky asset is given by ∆BS(t, St) with ∆BS(t, x) = ∂CBS

∂x
(t, x) where CBS is the

Black-Scholes price (proposition 5.6.1). The value at time t of this portfolio is
equal to

Vt = ∆BS(t, St)St +H0
t S

0
t

and the self-financing condition

dVt = ∆BS(t, St)dSt +H0
t dS

0
t

implies that

dVt = rVtdt+ ∆BS(t, St)(dSt − rStdt)

with initial condition

V0 = CBS(0, S0).

Thus, at time T the hedging error is

eT = VT − CBS(T, ST )︸ ︷︷ ︸
(ST−K)+

.

By Itô formula,

dCBS(t, St) =

(
∂CBS
∂t

(t, St) +
1

2

∂2CBS
∂x2

(t, St)Σ
2
tS

2
t

)
dt+

∂CBS
∂x

(t, St)dSt.

But Black-Scholes PDE (5.15) ensures that

∂CBS
∂t

(t, x) + rx
∂CBS
∂x

(t, x) +
σ2x2

2

∂2CBS
∂x2

(t, x) = rCBS(t, x).

Then, we obtain the following E.D.O



122 CHAPTER 5. THE BLACK-SCHOLES MODEL

d(Vt − CBS(t, St)) = r(Vt − CBS(t, St))dt−
1

2

∂2CBS
∂x2

(t, St)(Σ
2
t − σ2)S2

t dt.

Finally

eT =
erT

2

∫ T

0

e−rt
∂2CBS
∂x2

(t, St)(−Σ2
t + σ2)S2

t dt.

So, When σ ≥ Σt a.s then eT ≥ 0 a.s, the Black-Scholes price dominates the real
price.
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APPENDIX (IN FRENCH FOR
THE MOMENT.......)
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Simulation d’un mouvement
Brownien

Simuler?
Simuler le mouvement Brownien (où plus généralement un processus stochas-

tique) revient à calculer de manière numérique et approchée une trajectoire (ou
une famille de trajectoires) de ce processus (ie t ∈ [0, 1] → Bt(w) pour w fixé).

D’après ce qui a été dit dans le cours, plusieurs méthodes s’offrent à nous. J’en
détaillerai deux.

Représentation de Wiener (1923)
Soit (gn) une famille de N (0, 1) indépendantes définies sur un espace (Ω,A, P ).
On utilise la formule suivante

Bt(w) =

√
8

π

∞∑
n=1

sin(nt)

n
gn(w) (30)

où la série converge uniformément presque sûrement sur [0, 1].

L’algorithme de simulation se décompose de la manière suivante:

1) La formule étant une somme infinie on doit choisir un indice k0 suffisamment
grand (par ex k0 = 10000) pour valider l’approximation suivante

Bt(w) '
√

8

π

k0∑
n=1

sin(nt)

n
gn(w). (31)

2) Je simule les variables aléatoires gaussiennes en utilisant la méthode de Box
Muller (Je suppose ici que k0 est pair pour la commodité de la rédaction):

a) Je fais k0 appels à la fonction random de mon ordinateur. J’obtiens k0

éléments de l’intervalle [0, 1] que je note U1(w),....,Uk0(w) et qui correspondent à
une réalisation de k0 variables aléatoires indépendantes distribuées suivant une
U([0, 1]).

b) ∀j ∈ {1, k0
2
}, je calcule (en faisant appel aux commandes π, cos, sin, log et

√
de scilab)

g2j−1(w) =
√
−2log(U2j−1(w))cos(2πU2j(w))

et
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g2j(w) =
√
−2log(U2j−1(w))sin(2πU2j(w)).

Ainsi, d’après l’exercice vu en cours les g1(w),....,gk0(w) correspondent à une
réalisation de k0 variables aléatoires indépendantes distribuées suivant uneN (0, 1).

3) Je définis en faisant une boucle la fonction

t→
√

8

π

k0∑
n=1

sin(nt)

n
gn(w).

4) je trace cette fonction.

On obtient le résultat suivant sous scilab avec k0 = 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
!1.2

!1.0

!0.8

!0.6

!0.4

!0.2

0.0

0.2

Méthode de donsker

je rappelle le résultat du cours sur lequel est fondée la méthode.

On se donne une famille (Uk)k∈N∗ de variables aléatoires indépendantes, centrées
et réduites. Pour tout n ∈ N∗, on note Sn = U1 + ... + Un la n-ième somme
partielle. Considérons alors l’interpolation polygonale de rang n de la série des
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sommes partielles renormalisées: ∀t ∈ [0, 1], on pose

Xn(t) =
1√
n

 [nt]∑
k=1

Uk + (nt− [nt])U[nt]+1

 . (32)

Theorem .0.1 La suite de processus continus (Xn) converge en loi dans C =
C([0, 1],R) vers la loi du M.B i.e ∀f ∈ Cb(C,R), E[f(Xn)] → E[f(B)].

L’algorithme de simulation est alors le suivant:

1) La formule étant une série infinie on doit choisir un indice k0 suffisamment
grand (par ex k0 = 10000) pour valider l’approximation suivante:

B(t)(w) ≈ 1√
k0

[k0t]∑
k=1

Uk(w) + (k0t− [k0t])U[k0t]+1(w)

 . (33)

2) Je fais le choix de mes variables aléatoires U1,....,Uk0 centrées réduites
indépendantes et je simule une réalisation de ces variables (vous pouvez utiliser
si vous le voulez les gaussiennes g1(w),....,gk0(w) et poser Uj(w) = gj(w) , per-
sonnellement, j’ai fait un choix différent....).

3) Pour tout j ∈ {1, k0} je calcule (en faisant une boucle)

Sj√
k0

=
U1 + ...+ Uj√

k0

.

4) Reste donc à tracer

t→ 1√
k0

[k0t]∑
k=1

Uk(w) + (k0t− [k0t])U[k0t]+1(w)

 .

Contrairement à la forme qui peut parâıtre un peu barbare, ceci est en fait très
simple. En effet, la fonction n’est autre que la fonction linéaire par morceaux
passant par tous les points de la forme ( j

k0
,
Sj√
k0

). Il existe sur tous les logiciels

de calcul matriciel (scilab, matlab) une fonction (appelée “plot’) permettant de
réaliser ceci sans travailler (et donc on en profite)!!!!

La simulation suivante a été réalisée sous scilab en choisissant les Ui de sorte
que P (Ui = 1) = P (Ui = −1) = 1

2
(pour la simulation des Ui je renvois aux

annexes du Lamberton-Lapeyre) et en prenant k0 = 10000.
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Exercice 1: Essayez de le faire vous même en utilisant par exemple scilab qui
est très bien et gratuit!!! On peut le télécharger à l’adresse suivante:

“http://www.scilab.org/download/index download.php?page=release.html”.

Exercice 2: Faire un travail similaire pour la méthode du point milieu.
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Quelques exercices
Exercice 1: 1) Montrer que la variable aléatoire Xt =

∫ t
0
cos(s)dBs est bien

définie.

2) Montrer que (Xt)t∈[0,1] est un processus gaussien dont vous calculerez la
moyenne et la fonction de covariance.

3) Montrer que Xt = cos(t)Bt +
∫ t

0
sin(s)Bsds.

Exercice 2: Soit t ∈ [0, 1] et f ∈ L2([0, 1]), montrer que

E[Bt

∫ 1

0

f(s)dBs] =

∫ t

0

f(s)ds.

Exercice 2’: On cosnidère la suite (Zn)n∈N∗ de variables aléatoires définies
par

Zn =

∫ 1

0

(1 +
s

n
)ndBs

et on pose

Z =

∫ 1

0

esdBs.

1) Montrer que (Zn)n∈N∗ converge vers Z dans L2.
2) Montrer que ∀s ∈ [0, 1],

0 ≤ s− nlog(1 +
s

n
) ≤ s2

2n
.

En déduire que

0 ≤ es − (1 +
s

n
)n ≤ e1

2n
.

3) En déduire que pour tout α > 0,∑
n≥1

P (|Zn − Z| > α) <∞.

4) Montrer que la suite (Zn)n∈N∗ converge presque sûrement vers Z.

Exercice 3: Soit Xt la solution de l’EDS suivante:

dXt = (µXt + µ′)dt+ (σXt + σ′)dBt, X0 = 0.

On pose St = e(µ−
σ2

2
)t+σBt .
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1) Démontrer que d(XtS
−1
t ) = S−1

t [(µ′ − σσ′)dt+ σ′dBt].

2) En déduire une expression pour Xt.

Exercice 4: Dans le modèle de Black et Scholes, calculer la probabilité qu’un
call européen soit exercé.

Exercice 5: Soit St la solution de dSt = rStdt+ σStdBt.

1) Soit K ∈ R+, montrer que le processus

Mt = E

[(
1

T

∫ T

0

Sudu−K

)
+

|FB
t

]
est une martingale.

2) Montrer que si l’on pose ξt = S−1
t

(
K − 1

T

∫ t
0
Sudu

)
, on a

Mt = StE

[(
1

T

∫ T

t

Su
St
du− ξt

)
+

|FB
t

]
.

3) Soit φ(t, x) = E

[(
1
T

∫ T
t

Su

St
du− x

)
+

]
. Montrer que Mt = Stφ(t, ξt).

4) Ecrire la formule d’Itô pour Mt et en déduire une EDP vérifiée par la fonc-
tion φ.

Exercice 6: Soit B un MB sous une probabilité P . Soit (Mt)t∈[0,1] une FB
t

martingale (sous P ) telle que dMt = MtσdBt avec σ ∈ R et M0 = 1.

1) Vérifier que M est à valeurs strictement positives.

2) Calculer dYt où Yt = M−1
t .

3) Soit Q la probabilité définie par dQ
dP

= MT . Déterminer la loi de Y sous Q.

4) Montrer que

EP [(MT −K)+] = KEP [(K−1 −MT )+].

Exercice 7: Si Xt est solution d’une EDS de type

dXt

Xt

= r(t)dt+ σXt (dBt + λtdt)
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le paramètre (éventuellement aléatoire) σX est appelé la volatilité locale de X.
Dans le cadre du modèle de Black et Scholes, montrer que la volatilité local d’un
call est plus grande que la volatilité historique (ce phénomène est connu sous le
nom d’effet levier).

Exercice 8: Trouver (θt)t∈[0,T ] ∈ L2
prog(Ω×[0, T ]) tel que F = E[F ]+

∫ T
0
θsdBs

pour

1) F = BT ,

2) F =
∫ T

0
Bsds,

3) F = B2
T ,

4) F = eBT .

Exercice 9: On se place dans le cadre du modèle de Black et Scholes vu en
cours. On note C(St, t, T,K) (resp. P (St, t, T,K)) le prix à l’instant t du call
(resp. du put) de strike K et d’échéance T .

1) Expliciter P (St, t, T,K) en fonction de C(St, t, T,K).

2) On fixe dorénavant T0 ∈]0, T [. On considère l’option DF (dépard forward)
suivante: le détenteur de cette option reçoit à l’instant T0 un call d’échéance T
et de strike ST0 .

a) Quel est le payoff terminal en T d’une telle option?

b) Prouver que le prix en T0 de cette option peut s’écrire ST0C(1, T0, T, 1).

c) Montrer que le prix à 0 ≤ t ≤ T0 est C(St, T0, T, St).

3) On considère maintenant l’option CH (chooser) suivante: le détenteur de
cette option choisit à la date T0 si l’option en question est un call ou un put
d’exercice K et d’échéance T fixés à l’avance.

a) Quel est le prix à T0? Montrer qu’il peut se mettre sous la forme

C(ST0 , T0, T,K) + (Ke−r(T−T0) − ST0)+.

c) Trouver le prix à 0 ≤ t ≤ T0 de cette option. Donner un portefeuille fi-
nancier statique de couverture entre 0 et T0.

Exercice 9: Exercice 1.3.4 du poly.
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Exercice 10: Soit Yt = h(t)dt+dBt et rt = σ(t)Yt où h et σ sont des fonctions

de classe C1. On souhaite calculer E
[
e−

R t
0 rsds

]
.

1) Exprimer dr.

2) Soit LHt = e
R t
0 H(s)dBs− 1

2

R t
0 H

2(s)ds. Justifier que E[LHT ] = 1 pour toute fonction
H continue. En déduire que

E
[
eh(T )BT−

R T
0 h′(s)Bsds− 1

2

R T
0 h2(s)ds

]
= 1.

3) En utilisant Lht , montrer que

E
[
e−

R t
0 rsds

]
= E

[
eh(T )BT−

R T
0 (h′(s)+σ(s))Bsds− 1

2

R T
0 h2(s)ds

]
.

4) Calculer cette quantité.

Exercice 11: On considère un actif dont la dynamique est donnée par

dSt = St((r − δ)dt+ σdBt), S0 = x

.

1) Montrer que dans le cadre du modèle de Black et Scholes cette dynamique
modélise (sous la probabilité risque neutre Q) le prix d’un actif risqué versant des
dividendes au taux continu r.

2) On souhaite évaluer un actif contingent sur S. Il s’agit donc d’évaluer

EQ[h(ST )e−r(T−t)].

Quelle est la valeur de cet actif dans le cas où h(x) = (xα −K)+.

3) On suppose r = δ. On pose dQ̃ = ST

x
dQ et Zt = x2

St
.

a) Justifier rapidement que l’on définit ainsi un changement de probabilité.
b) Quelle est la dynamique de Zt sous Q̃?
c) Montrer que pour toute fonction borélienne bornée,

1

x
EQ[STf(

x2

ST
)] = EQ[f(ST )].

4) On repasse au cas général. Montrer que le processus Sa est une martingale
pour une valeur de a que l’on précisera. Montrer alors que pour toute fonction
borélienne bornée,
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1

xa
EQ[SaTf(

x2

ST
)] = EQ[f(ST )].

5) On se place dans le cas h(x) = xβ(x − K)+. Montrer que h(ST ) s’écrit
comme différence de deux payoffs correspondants à des call européens de sous
jacents Sβ+1 et Sβ avec des strikes que l’on déterminera. Conclure.

Exercice 12: Problème 1 (page 85) du Lamberton-Lapeyre.

Exercice 13: Problème 4, partie 2 (page 91) du Lamberton-Lapeyre.

Exercice 14: Problème 2, (page 86) du Lamberton-Lapeyre.
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Test 10/06 (1H)

Exercice 1: Soit (Ω,A, P ) un espace de probabilité équipé d’une filtration
(Ft)t∈R+ et (Xt)t∈R+ un processus réel défini sur (Ω,A, P ).

a) Quand dit on que le processus (Xt)t∈R+ est adapté?

b) Quand dit on que le processus (Xt)t∈R+ est progressivement mesurable?

c) Y a t-il un lien entre les deux notions?

d) On suppose que (Xt)t∈R+ est adapté et continu à droite. On veut montrer
que (Xt)t∈R+ est progressivement mesurable. Pour T ∈ R+, on définit la suite
(Xn)n∈N∗ de processus par Xn

t = XMin(T,([nt
T

]+1)T
n

), ∀t ∈ [0, T ].

d1) Montrer que ∀t ∈ [0, T ], Xn
t →
p.p
Xt.

d2) Montrer que ∀n ∈ N∗, ∀Γ ∈ B(R) on a

{(t, ω); 0 ≤ t ≤ T,Xn
t ∈ Γ} ∈ B([0, T ])×FT .

d3) Conclure.

L’exercice suivant est un exercice sur les martingales pas sur le M.B

Exercice 2: Soit (Bt)t∈[0,1] un processus stochastique sur un espace de prob-
abilité (Ω,A, P ). On note (FB

s = σ(Bu, u ≤ s))s∈[0,1] sa filtration naturelle. On
suppose que les hypothèses suivantes sont vérifiées:

a) B0 = 0 P -p.s.

b) (Bt)t∈[0,1] est continu.

b) Si t > s, Bt −Bs est indépendant de FB
s .

c) Si t ≥ s, Bt −Bs suit une N (0, t− s).

En utilisant les propriétés de l’espérance conditionnelle montrer que les pro-
cessus (Bt)t∈[0,1], ((Bt)

2 − t)t∈[0,1] et (eθBt−θ2 t
2 )t∈[0,1] (θ ∈ R) sont des (FB

t )
t∈[0,1]

martingales continues de carré intégrable.

Exercice 3 Montrer que la limite de toute suite de variables aléatoires gaussi-
ennes qui converge dans L2 est gaussienne.
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Master IRFA

Examen de Calcul Stochastique 12/06

3 Heures

Les notes de cours et les calculatrices ne sont pas autorisées. La clarté et la
concision des réponses seront des éléments déterminant de la notation.

Indication de Barème: I) 6 points, II) 8 points, III) 6 points. La
question III) 3 est hors barème et vaut 3 points.

Exercice I: On se place dans le cadre du modèle de Black et Scholes: la
dynamique de l’actif risqué entre 0 et T > 0 est donnée par l’EDS suivante

dSt = µStdt + σStdBt (34)

de condition initiale S0 = x0 > 0 où µ ∈ R et σ ∈ R∗
+.

a) On pose ∀n ∈ N, ∀j ∈ {0, ..., 2n}, tnj = Tj
2n . Montrer que

lim
n→+∞

1

T

2n−1∑
j=0

(
log

(
Stnj+1

Stnj

))2

= σ2.

Expliquer l’intérêt de cette relation d’un point de vue statistique.

b) On considère un actif contingent h de la forme f(ST ). Rappeler la définition
des grecques ∆ et Γ. Quel est leur intérêt pour le praticien?

c) Expliquer en 10 lignes maximum deux points faibles du modèle de Black et
Scholes.

Exercice II: Modèle de Black et Scholes avec paramètres dépendant
du temps

Nous reprenons le modèle de Black et Scholes, en supposant que le prix de
l’actif sans risque est donné par

dS0
t = r(t)S0

tdt; S0
0 = 1 (35)

et celui de l’actif risqué par

dSt = µ(t)Stdt + σ(t)StdBt; S0 = x0 > 0 (36)
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où r, µ et σ sont dans C([0, T ],R) et où B est un mouvement Brownien standard
sous la probabilité historique P . On supposera de plus que inf

t∈[0,T ]
σ(t) > 0.

1) En considérant le processus

Zt = Ste
−

R t
0 µ(s)ds−

R t
0 σ(s)dBs+

1
2

R t
0 σ

2(s)ds,

montrer que l’unique solution de (3) est donnée par

St = S0e
R t
0 µ(s)ds+

R t
0 σ(s)dBs− 1

2

R t
0 σ

2(s)ds.

2) Montrer qu’il existe une probabilité Q équivalente à P sous laquelle le prix
actualisé de l’actif risqué est une martingale. Donner la densité de Q par rapport
à P .

3) Soit (Ht = (θ0
t , θt)t∈[0,T ]) une stratégie financière autofinancée dont la valeur

à t est notée Vt. Montrer que lorsque ( Vt

S0
t
)t∈[0,T ] est une martingale sous Q vérifiant

VT = (ST −K)+ alors
Vt = F (t, St)

où

F (t, x) = EQ

[(
xe

R T
t σ(s)dWs− 1

2

R T
t σ2(s)ds −Ke−

R T
t r(s)ds

)
+

]
et où W est un mouvement Brownien standard sous Q.

4) Expliciter la fonction F et faire le lien avec la formule de Black et Scholes.
Que peut on en déduire pour le prix d’un put d’échéance T et de strike K?

5) Construire une stratégie de couverture pour le Call d’échéance T et de strike
K. Cette stratégie est elle autofinancée?

6) Démontrer que F vérifie une équation aux dérivées partielles que vous ex-
pliciterez.

Exercice III: Prix d’un zéro coupon dans le modèle de Hull et White

On considère le processus (r(t))t∈[0,T ] vérifiant l’EDS suivante

dr(t) = [α(t)− β(t)r(t)]dt+ σ(t)dBt (37)

où α, β et σ ∈ C([0, T ],R). On pose K(t) =
∫ t

0
β(s)ds

1) Calculer d(eK(t)r(t)). En déduire que
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r(t) = e−K(t)

[
r(0) +

∫ t

0

eK(u)α(u)du+

∫ t

0

eK(u)σ(u)dBu

]
.

2) Montrer que (r(t))t∈[0,T ] est un processus gaussien continu dont vous cal-
culerez la moyenne et la fonction de covariance.

3) On pose Xt =
∫ t

0
eK(u)σ(u)dBu et YT =

∫ T
0
e−K(u)Xudu. Montrer que

YT ↪→ N

(
0,

∫ T

0

e2K(u)σ2(u)

(∫ T

u

e−2K(y)dy

)2

du

)
.

4) En déduire la loi de
∫ T

0
r(s)ds.

5) Donner le prix du zéro coupon

E
[
e−

R T
0 r(s)ds

]
.
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Master IRFA

Calcul Stochastique 06/07

2 Heures

Les notes de cours et les calculatrices ne sont pas autorisées. La clarté et la
concision des réponses seront des éléments déterminant de la notation.

Indication de Barème: I) 7 points, II) 8 points, III) 5 points, .

Exercice I: Autour du cours

1) Exposer de manière précise et concise une méthode de simulation du mou-
vement brownien.

2) On pose Xt =
∫ t

0
cos(s)dBs.

2.a) Montrer que (Xt)t∈[0,1] est un processus gaussien dont vous calculerez la
moyenne et la fonction de covariance.

2.b) Montrer que Xt = cos(t)Bt +
∫ t

0
sin(s)Bsds.

3) Démontrer que le mouvement brownien est un processus à variations infinies
sur tout intervalle.

4) En utilisant le théorème approprié vu en cours, démontrer l’existence d’une
probabilité risque neutre dans le modèle de Black-Scholes

Exercice II: Moments de la solution de l’EDS de Black-Scholes

On considère l’EDS de Black-Scholes

dSt = µStdt + σStdBt (38)

de condition initiale S0 = x0 > 0 où µ ∈ R et σ ∈ R∗
+.

a) Montrer qu’une solution de l’EDS est donnée par

St = x0e
(µ−σ2

2
)t+σBt .

Montrer que la solution ci-dessus est unique.
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b) Calculer E[St].

c) Pour α ≥ 2, determiner l’EDS vérifiée par Sαt .

d) Montrer soigneusement que

E[Sαt ] = xα0 +

∫ t

0

βE[Sαs ]ds

où β = αµ+ α(α−1)σ2

2
.

e) En déduire que
E[Sαt ] = xα0 e

βt.

Exercice III: Changement de numéraire

On considère deux actifs financiers dont le prix est donné par les processus
d’Itô suivants

dS1
t = µ1

tdt+ σ1
t dBt

dS2
t = µ2

tdt+ σ2
t dBt

où les intégrands sont dans L2
prog(Ω× [0, T ]).

Soient Φ1 et Φ2 deux processus stochastiques progressivement mesurables et
bornés.

On définit ∀t ∈ [0, T ],
Xt = Φ1

tS
1
t + Φ2

tS
2
t (39)

et on suppose que

dXt = Φ1
tdS

1
t + Φ2

tdS
2
t . (40)

a) Interpréter financièrement (2) et (3).

b) Soit (Ut)t∈[0,T ] un processus d’Itô de la forme

dUt = U1
t dt+ U2

t dBt.

Montrer que
d(UX)t = Φ1

td(US
1)t + Φ2

td(US
2)t.

c) Donner une interprétation financière simple de la question précédente.
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Master IRFA

Exam of Stochastic calculus 01/08

3 Heures

Notation: 1) 3 points, 2) 11 points, 3) 8 points.

Exercise 1: Course

1) Show that a stochastic process (Bt)t∈[0,1] is a standard brownian motion
if and only if it is a continuous and centered gaussian process with covariance
function Γ[s, t] = inf(s, t).

2) When (Bt)t∈R+ is a brownian motion, show that Bn

n
→
n→∞

0.

Exercise 2: Black-Scholes model, binary options, options on mean

We are in the framework of the Black-Scholes model: the dynamic of the non
risky asset is given by

dS0
t = rS0

tdt; S0
0 = 1 (41)

and the dynamic of the risky one by

dSt = µStdt + σStdBt; S0 = x0 > 0 (42)

where r, µ and σ are non negative real numbers and where B is a standard brow-
nian motion under the historical probability P .

A] 1) Considering

Zt = Ste
−µt−σBt+

1
2
σ2t,

show that the unique solution of (2) is given by

St = S0e
µt+σBt− 1

2
σ2t.

2) Remind the Black Scholes formula for the price of a european call at time
0 ≤ t ≤ T .

B] A binary option has a payoff IST≥K at time T .

a) Compute the price of this option at time 0 ≤ t ≤ T .

b) Show that the associated delta and gamma are given ∀0 ≤ t ≤ T by
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∆t(x) =
e−r(T−t)

xσ
√
T − t

n(d(t, x)) et Γt(x) =
e−r(T−t)

x2σ2(T − t)
n(d(t, x))

(
d(t, x) + σ

√
T − t

)
where n is the density function of aN (0, 1) and where d(t, x) =

log( x
K

)+(r−σ2

2
)(T−t)

σ
√
T−t .

c) What is the interest of these quantities in finance?

d) Deduce (without computations) from a) the price of an option with a payoff
equal to IST<K .

C] A european call on the mean is characterized by its payoff

(e
1
T

R T
0 ln(St)dt −K)+.

1) show that the price at time t = 0 is given by

Z0N(d1)−Ke−rTN(d2)

where

Σ =
σ√
3
, Z0 = S0e

−bT
2
−σ2T

12 ,

d1 =
ln(Z0

K
) + (r + Σ2

2
)T

Σ
√
T

and d2 =
ln(Z0

K
) + (r − Σ2

2
)T

Σ
√
T

and where N is the distribution function of a N (0, 1).

2) What is the composition of the associated hedging portfolio?

Exercise 3: Let B be a standard brownian motion under a probability P . Let
(Mt)t∈[0,1] be a FB

t martingale (under P ) such that dMt = MtσdBt with σ ∈ R
and M0 = 1.

1) Prove that M is a strictly positive process.

2) Compute dYt where Yt = M−1
t .

3) Let Q be a probability defined by dQ
dP

= MT . Find the distribution of Y
under Q.



BIBLIOGRAPHY 143

4) Show that

EP [(MT −K)+] = KEP [(K−1 −MT )+].

5) Give a financial interpretation of this result.
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Master IRFA

Exam of Stochastic calculus 12/08

3 Heures

Les notes de cours et les calculatrices ne sont pas autorisées. La clarté et la
concision des réponses seront des éléments déterminant de la notation.

Indication de Barème: I) 4, II) 8, III) 8.

Dans tout l’énoncé (Bt)[0,T ] est un mouvement brownien standard défini sur un
espace (Ω,A, P ). On notera, de plus, E l’espérance sous P et (Ft)[0,T ] la filtration
Brownienne.

Exercice I: Autour du cours

1) Montrer que le processus (B2
t − ẗ)[0,T ] est une martingale continue par rap-

port à la filtration Brownienne.

2) Dans le cadre du modèle de Black-Scholes donnez (en utilisant la formule
pour le call) le prix d’une option de vente à l’instant t. Quel est le portefeuille
de couverture associé?

Exercice II: Ornstein-Uhlenbeck, Vasicek, CIR

On considère l’EDS
dXt = αXtdt+ bdBt (43)

où (α, b) ∈ R2 et X0 = x ∈ R.

1) En utilisant le processus Yt = e−αtXt montrez que l’unique solution de (1)
est donnée par

Xt = eαt
(
x+ b

∫ t

0

e−αsdBs

)
.

2) Montrer que (Xt) est un processus gaussien dont vous calculerez les fonc-
tions de moyenne et de covariance.

3) Montrer que (
∫ t

0
Xsds) est un processus gaussien dont vous calculerez les

fonctions de moyenne et de covariance.

4) Calculez E[e
R T
0 Xsds].
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5) En utilisant 1) montrez que l’équation

dZt = −α(a− Zt)dt+ bdBt (44)

où a ∈ R et Z0 = z ∈ R admet une unique solution dont vous donnerez le forme
explicite.

6) On définit ∀t ∈ [0, T ], rt = X2
t . Montrez que

drt = 2
√
rtbdBt + (2αrt + b2)dt.

Exercice III: Options asiatiques dans Black-Scholes

Nous reprenons ici le modèle de Black et Scholes, en supposant que le prix de
l’actif sans risque est donné par

dS0
t = rS0

tdt; S0
0 = 1 (45)

et celui de l’actif risqué par

dSt = µStdt + σStdBt; S0 = x0 > 0 (46)

où r, µ et σ sont des réels strictement positifs.

A] Montrez l’existence d’une probabilité Q équivalente à P telle que le proces-
sus ( St

ert )t∈[0,T ] soit une martingale.

Quelle est la dynamique de (St) sous Q?
B] On suppose maintenant r = 0 et que dSt = σStdWt où (Wt) est un mouve-

ment Brownien standard sous Q

1) Soit K ∈ R+, montrer que le processus

Mt = EQ

[(
1

T

∫ T

0

Sudu−K

)
+

|FB
t

]
est une martingale.

Que représente cette quantité d’un point de vue financier?

2) Montrer que si l’on pose ξt = S−1
t

(
K − 1

T

∫ t
0
Sudu

)
, on a

Mt = StEQ

[(
1

T

∫ T

t

Su
St
du− ξt

)
+

|FB
t

]
.
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3) Montrer pour tout t ∈ [0, T ] que
∫ T
t

Su

St
du est indépendante de FB

t et que

ξt est FB
t mesurable.

4) Soit φ(t, x) = EQ

[(
1
T

∫ T
t

Su

St
du− x

)
+

]
. Montrer que Mt = Stφ(t, ξt).

5) Montrer que

dS−1
t = S−1

t [(σ2)dt− σdBt]

et que

dξt = ξt[(σ
2)dt− σdBt]−

dt

T
.

6) Ecrire la formule d’Itô pour Mt et en déduire une EDP vérifiée par la fonc-
tion φ.


